

# z471

Floating Source/Measure Unit (SMU) PXI Express



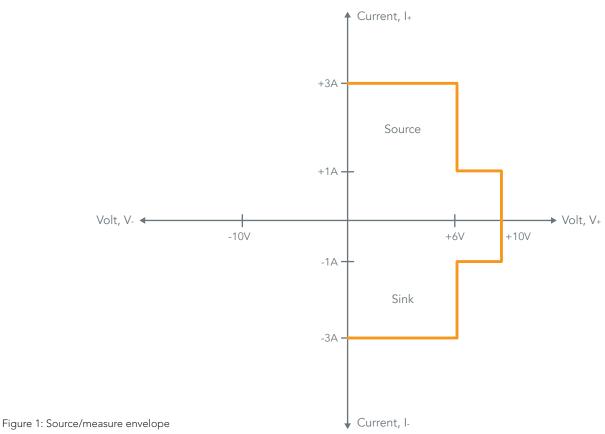


## Port Descriptions



Trigger: bi-directional external trigger port (BNC)

Analog output: GUARD HIGH side driven current guard (see manual for proper operation)


SH Sense High input
FH Force High output
SL Sense Low input
FL Force Low output

| LED | Description                                                                             |
|-----|-----------------------------------------------------------------------------------------|
| ERR | ON when internal temperature is more than 75°C or Phase-locked loop (PLL) fails to lock |
| ACT | Blink when instrument is active                                                         |
| PWR | ON when instrument is powered ON                                                        |

# **Electrical Specifications**

### General

| Specification                       | Value                                                |
|-------------------------------------|------------------------------------------------------|
| Channels                            | 1                                                    |
| Operation                           | 2 quadrant                                           |
| Remote sensing                      | 5-wire with Guard                                    |
| Maximum voltage / current           | +10 V, ±3 A (DC)                                     |
| Isolation (Channel to Earth Ground) | 60 V maximum                                         |
| Voltage ranges                      | 1, 10 VFS                                            |
| Voltage resolution                  | down to 20 µV                                        |
| Current ranges                      | 1 μA, 10 μA, 100 μA, 1 mA, 10 mA, 100 mA, 1 A, 3 AFS |
| Current resolution                  | down to 10 pA                                        |
| Programmable bandwidth              | Custom, Slow, Normal, Fast                           |
| Line integration                    | Programmable 50/60 Hz                                |



### Voltage Source/Measure Accuracy

| Range (+V) | Accuracy (V),<br>± (% of voltage + offset),<br>Tcal ±5 °C | Temp. Coefficient, ± (ppm<br>of Voltage + ppm of<br>Range)/°C, 13 °C – 33 °C | Resolution |
|------------|-----------------------------------------------------------|------------------------------------------------------------------------------|------------|
| 10         | 600 μ + 0.015%                                            | 25 + 6                                                                       | 80 µ       |
| 1          | 1 m + 0.1%                                                | 25 + 21                                                                      | 20 μ       |

### Current Source/Measure Accuracy

| Range (±A) | Accuracy (A),<br>± (% of current + offset),<br>Tcal ±5 °C | Temp. Coefficient, ±<br>(ppm of current + ppm of<br>Range)/°C, 13 °C – 33 °C | Resolution |
|------------|-----------------------------------------------------------|------------------------------------------------------------------------------|------------|
| 3          | 3 m + 0.12%                                               | 27 + 6                                                                       | 400 μ      |
| 1          | 1 m + 0.12%                                               | 28 + 5                                                                       | 15 µ       |
| 100 m      | 15 µ + 0.03%                                              | 28 + 8                                                                       | 1 μ        |
| 10 m       | 1.5 µ + 0.03%                                             | 25 + 5                                                                       | 20 n       |
| 1 m        | 150 n + 0.03%                                             | 15 + 5                                                                       | 2 n        |
| 100 μ      | 15 n + 0.03%                                              | 28 + 5                                                                       | 200 p      |
| 10 μ       | 1.5 n + 0.03%                                             | 10 + 10                                                                      | 20 p       |
| 1 μ        | 1 n + 0.1%                                                | 11 + 120                                                                     | 10 p       |

#### Notes:

- 1. Tcal is the temperature recorded at calibration completion
- 2. Resolution is noise-limited. Specifications valid for aperture time of 2 power line cycles (PLC). See z471 Noise/Resolution vs. Measure Speed (see Figure 2) for typical performance at higher sample rates.

### Noise and Resolution vs. Measurement Aperture

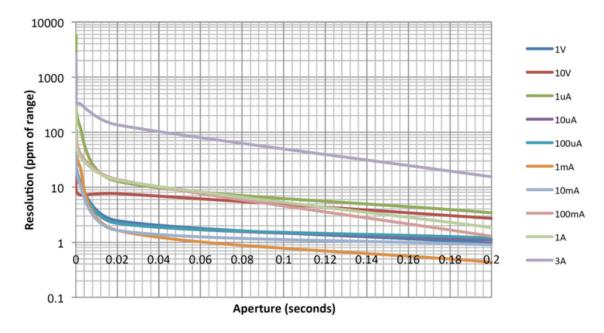



Figure 2: Typical noise/resolution as a function of measurement aperture

To derive a resolution in absolute units, complete the following:

- select a voltage or current range.
- for a given aperture time, find the corresponding resolution.
- multiply resolution in ppm of range by the selected range.

For example, the z471 resolution is  $\sim$ 10 ppm at 50 ms aperture. For the 100 mA measure range, multiply 100 mA by 10 ppm:

$$100 \text{ mA} * 10 \text{ ppm} = 0.1 \text{A} * 10 * 1 \text{x} 10^{-6} = 1 \text{ } \mu\text{A}$$

Similarly, for the 10 V range @ 50 ms:

$$10 \text{ V} * 8 \text{ ppm} = 10 \text{ V} * 8 * 1 \times 10^{-6} = 80 \text{ }\mu\text{V}$$

### Voltage settling time (no load)

- Settling time, typical:
   < 100 µs to settle to 0.1% of voltage step, fast transient response</li>
   (Note: Current limit set to ≥ 1mA)
- 2. Cable guard output impedance, typical:  $1k\Omega$
- 3. The following figures show transient response setting for different loads

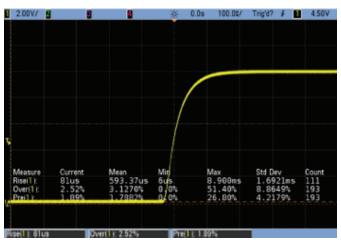



Figure 3: 10V step response, 10 mA range, typical, no load, Fast - <100 µs to 0.1%

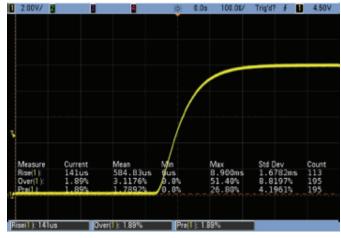



Figure 4: 10V step response, 10 mA range, typical, no load, Normal – <200 µs to 0.1%

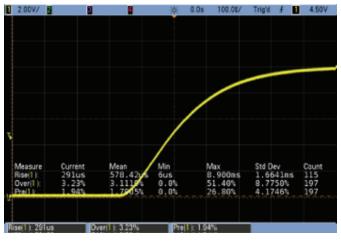



Figure 5: 10V step response, 10 mA range, typical, no load,  $\textit{Slow} - <\!500~\mu s$  to 0.1%

### Voltage settling time (100 nF load)

- Settling time, typical:
   100 µs to settle to 0.1% of voltage step, fast transient response
   (Note: Current limit set to ≥ 1mA)
- 2. Cable guard output impedance, typical:  $1k\Omega$
- 3. The following figures show transient response setting for different loads

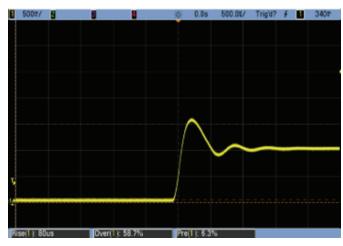



Figure 6: 10V step response, 10 mA range, typical, 100 nF load, Fast

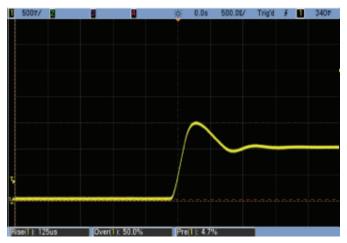



Figure 7: 10V step response, 10 mA range, typical, 100 nF load, *Normal* 

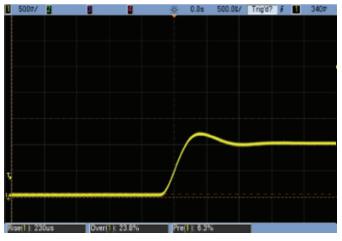



Figure 8: 10V step response, 10 mA range, typical, 100 nF load, *Slow* 

# Supplemental Electrical

| Specification                                                                      | Value                                                                                                                                                                                                |
|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Remote sense<br>Maximum lead drop                                                  | Add 2 $\mu V$ error to voltage accuracy specification per mV of lead drop Up to 1V drop per force lead                                                                                               |
| Sampling speed<br>Measure maximum<br>Source update rate maximum                    | 1 MS/s<br>100 kS/s                                                                                                                                                                                   |
| Connectors/output                                                                  | Phoenix Contact, MOBICON, 6-position, male<br>5-wires (Force High, Force Low, Sense High, Sense Low, Guard)<br>BNC socket                                                                            |
| Input triggers Types Sources Polarity Pulse width Destination Polarity Pulse width | Measure, measure array PXI trigger lines 0-7, external, software Configurable (high, low rising, falling) ≥ 200 ns PXI trigger lines 0-7, external Configurable (high, low rising, falling) ≥ 200 ns |
| Output trigger Types  Destination Polarity Pulse width                             | Source complete, measure complete, enter compliance, exit compliance, during source, software PXI trigger lines 0-7, external Active High Configurable between 1 µs and 50 ms                        |

# Physical & Environmental

## Size & Weight

| Specification               | Value                            |
|-----------------------------|----------------------------------|
| Physical size<br>z471 SMU   | 1 slot 3U PXI Express Instrument |
| Operating temperature range | 23° C ± 10° C                    |
| Calibration interval        | 1 year                           |

## Terminology

### **Numeric Prefixes**

When referring to numeric values, this document will use SI (International System of Units) and IEC (International Electrotechnical Commission) standard prefixes. Prefix definitions are in the following table.

| Prefix     | Multiplier         |
|------------|--------------------|
| n (nano)   | 1/(1000×1000×1000) |
| μ (micro)  | 1/(1000×1000)      |
| m (milli)  | 1/1000             |
| k/K (kilo) | 1000               |
| M (Mega)   | 1000×1000          |
| G (Giga)   | 1000x1000x1000     |
| Ki (Kibi)  | 1024               |
| Mi (Mebi)  | 1024×1024          |
| Gi (Gibi)  | 1024×1024×1024     |

### Differential Outputs

Single-Ended is used to refer to the output on either the + or - output pin

Differential is used to refer to the output between the + and- output pins

Vd indicates Volts differential

**Vppd** indicates Volts peak-to-peak differential

### Safety

This product is designed to meet the requirements of the following standard of safety for electrical equipment for measurement, control and laboratory use: EN 61010-1

## **Electromagnetic Compatibility**

CE Marking EN 61326-1:1997 with A1:1998 and A2:2001 Compliant

FCC Part 15 (Class A) Compliant

#### **Emissions**

| EN 55011      | Radiated Emissions, ISM Group 1, Class A, distance 10 m, emissions < 1 GHz |
|---------------|----------------------------------------------------------------------------|
| EN 55011      | Conducted Emissions, Class A, emissions < 30 MHz Immunity                  |
| EN 61000-4-2  | Electrostatic Discharge (ESD), 4 kV by Contact, 8 kV by Air                |
| EN 61000-4-3  | RF Radiated Susceptibility, 10 V/m                                         |
| EN 61000-4-4  | Electrical Fast Transient Burst (EFTB), 2 kV AC Power Lines                |
| EN 61000-4-5  | Surge                                                                      |
| EN 61000-4-6  | Conducted Immunity                                                         |
| EN 61000-4-8  | Power Frequency Magnetic Field, 30 A/m                                     |
| EN 61000-4-11 | Voltage Dips and Interrupts                                                |

# **CE** Compliance

This product meets the necessary requirements of applicable European Directives for CE Marking as follows:

73/23/EEC Low Voltage Directive (Safety)

89/336/EEC Electromagnetic Compatibility Directive (EMC)

See Declaration of Conformity for this product for additional regulatory compliance information.

Copyright © 2014 LitePoint, A Teradyne Company.

All rights reserved

#### RESTRICTED RIGHTS LEGEND

No part of this document may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language or computer language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual, or otherwise, without the prior written permission of LitePoint Corporation.

#### DISCLAIMER

LitePoint Corporation makes no representations or warranties with respect to the contents of this manual or of the associated LitePoint Corporation products, and specifically disclaims any implied warranties of merchantability or fitness for any particular purpose. LitePoint Corporation shall under no circumstances be liable for incidental or consequential damages or related expenses resulting from the use of this product, even if it has been notified of the possibility of such damages.

If you find errors or problems with this documentation, please notify LitePoint Corporation at the address listed below. LitePoint Corporation does not guarantee that this document is errorfree. LitePoint Corporation reserves the right to make changes in specifications and other information contained in this document without prior notice.

#### **TRADEMARKS**

LitePoint and the LitePoint logo are registered trademarks of LitePoint Corporation. z471 is a trademark of LitePoint Corporation. All other trademarks or registered trademarks are owned by their respective owners.

**CONTACT INFORMATION** LitePoint Corporation 965 W. Maude Ave. Sunnyvale, CA 94085-2803 United States of America

Telephone: +1.408.456.5000

LITEPOINT TECHNICAL SUPPORT www.litepoint.com/support

Telephone: +1.408.456.5000 Available: weekdays 8am to 6pm,

Pacific Standard Time.

E-mail: support@litepoint.com

Doc: 1075-1009-001 March 2014 Rev 1