

MIMO

NFC

z475 Remote DC Power Supply Preliminary

LTE Advanced

MIMO

loT

Bluetooth

5G

Wi-Fi

Overview

The z475 remote DC Power supply can provide a stable VCC voltage for PA/FEM/SW DUTs in a cabled test setup without the use of capacitors or trackers on the load board. The z475's small footprint allows mounting close to DUT. It has an onboard FPGA to capture current and/or voltage waveforms as well as provide averaging and peak detection.

Testing Setup

Elements	Description	Notes
z8820	DC Power & DIO Controller PXIe Remote Interface Card	Two DB-26H interfaces
z475	Remote DC Power Supply	

Port Descriptions

Port	Description
DB-26H	D-sub 26-pin
Screw Terminals	Force, Sense, Return

Electrical Specifications (General)

Specification	Value
Channels	1
Test points	Voltage/Current/Spare 3.3V CMOS I/O
Voltage range	0 V-7.5 V
Voltage resolution	115 μV
Voltage sense range	7.5 V
Voltage sense resolution	1.83 mV
Maximum current, per z8820 one z475 or shared between two z475s	2 A
Current ranges	3 A, 500 mA, 50 mA, 5 mA, 500 μA, 50 μA
Waveform capture	Up to 800 kSPS, up to 64 kS memory depth
Max Power / Cooling	28 W *Dependent upon operating conditions. See table below to estimate z475 power dissipation

Transistor Power Dissipation Operating Off of 9V Rail (Default)

Transiste	or Power		A				Curre	ent (A)					
Dissipat	tion (W)	0.25	0.5	0.75	1	1.25	1.5	1.75	2	2.25	2.5	2.75	3
	0.5	2.125	4.25	6.375	8.5	10.625	12.75	14.875	17	19.125	21.25	23.375	25.5
	1	2	4	6	8	10	12	14	16	18	20	22	24
	1.5	1.875	3.75	5.625	7.5	9.375	11.25	13.125	15	16.875	18.75	20.625	22.5
	2	1.75	3.5	5.25	7	8.75	10.5	12.25	14	15.75	17.5	19.25	21
v	2.5	1.625	3.25	4.875	6.5	8.125	9.75	11.375	13	14.625	16.25	17.875	19.5
0	3	1.5	3	4.5	6	7.5	9	10.5	12	13.5	15	16.5	18
I I	3.5	1.375	2.75	4.125	5.5	6.875	8.25	9.625	11	12.375	13.75	15.125	16.5
t t	4	1.25	2.5	3.75	5	6.25	7.5	8.75	10	11.25	12.5	13.75	15
a	4.5	1.125	2.25	3.375	4.5	5.625	6.75	7.875	9	10.125	11.25	12.375	13.5
a	5	1	2	3	4	5	6	7	8	9	10	11	12
9	5.5	0.875	1.75	2.625	3.5	4.375	5.25	6.125	7	7.875	8.75	9.625	10.5
	6	0.75	1.5	2.25	3	3.75	4.5	5.25	6	6.75	7.5	8.25	9
	6.5	0.625	1.25	1.875	2.5	3.125	3.75	4.375	5	5.625	6.25	6.875	7.5
	7	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5	5.5	6
	7.5	0.375	0.75	1.125	1.5	1.875	2.25	2.625	3	3.375	3.75	4.125	4.5

z475 Transistor Power Dissipation Derating

Voltage Output Specifications

Range	Resolution	Accuracy ¹	Temperature Drift
0V – 7V	1 mV	± 500 μV from 0-6 V ± 3 mV above 6 V	8.12 µV/C

Voltage Measurement Specifications

Range	Resolution	Accuracy ¹	Temperature Drift
0V – 7.5V	1.83 mV	± 3 mV	4.13 µV/C

Current Measurement

Range	Resolution	0.1-10 Hz Noise ¹	Accuracy ¹	Temperature Drift
3 A	77 μΑ	20 µА р-р	± 150 μA	-4.55 µA/C
500 mA	7.7 μΑ	20 µА р-р	± 30 μA ± 150 μA Max ²	-4.55 μA/C
50 mA	770 nA	20 µА р-р	± 10 μA ± 150 μA Max²	-4.55 μA/C
5 mA	77 nA	20 nA p-p	± 500 nA ± 35 μA Max³	9 nA/C
500 μΑ	7.7 nA	20 nA p-p	± 50 nA ± 35 μA Max³	9 nA/C
50 μΑ	770 pA	20 nA p-p	± 40 nA ± 35 μA Max ³	9 nA/C

Voltage Transient Response

Specification	Value		
Settling time	5 µS	200 mV droop settles to 10 mV 0.01 uF load cap, 5 V, 0.5 A	
	10 µS	100 mV droop settles to 10 mV 4.7uF load cap, 5V, 0.5A	

1 Specifications are for 25° C ambient temperature, and 64ms aperture window 2 Current Accuracy when operating between 5.2V to 5.3V in 3 wire mode $\pm150~\mu A$ 3 Current Accuracy when operating between 5.2V to 5.3V in 3 wire mode $\pm35~\mu A$

Voltage Transient Response

Turn On Transient

5 V 0.5 A Load with 0.01 μF capacitor Max Droop: 200 mV Setting time: 5 μs

5 V 0.5 A Load with 3.3 μF capacitor Max Droop: 80 mV Setting time: 7.5 μs

5 V 0.5 A Load, No Capacitor Max Droop: 200 mV Setting time: 3.5 μs

Turn Off Transient

5 V 0.5 A Load with 0.01 μF capacitor Max Overshoot: 250 mV Over Volt Duration: 4 μs

5 V 0.5 A Load 3.3 μF capacitor Max Overshoot: 150 mV Over Volt Duration: 4 μs

Current Step Response

5 V 1 Amp Load Current response, 3 A Range Setting

5 V 10 μA Load Current response, 50 μA Range Setting

Supplemental Electrical

Specification	Value
Triggers	Triggered: Rising or falling edge
Types	Immediate
Delay	0-819 μs
Trigger pulse width	≥150 ns
Capture window	1.25 μs – 81.92 ms @ 800 kSPS, other sample rates available

Physical & Environmental

Size & Weight

Specification	Value
Physical Size	4.39" X 2.09"X 1.30" Remote instrument
Weight	4.4 oz
Operating temperature range	0°C – 50°C
Calibration interval	1 year

Power Requirements

Voltage	Typical Current	Max Current
+6 V	0.15 A	3.0 A
+9 V	0.06 A	3.0 A
-13 V	0.03 A	0.1 A

Terminology

Numeric Prefixes

When referring to numeric values, this document will use SI (International System of Units) and IEC (International Electrotechnical Commission) standard prefixes. Prefix definitions are in the following table.

Prefix	Multiplier
n (nano)	1/(1000×1000×1000)
μ (micro)	1/(1000×1000)
m (milli)	1/1000
k/K (kilo)	1000
M (Mega)	1000×1000
G (Giga)	1000×1000×1000
Ki (Kibi)	1024
Mi (Mebi)	1024×1024
Gi (Gibi)	1024x1024x1024

Differential Outputs

Single-Ended is used to refer to the output on either the + or – output pin

Differential is used to refer to the output between the + and- output pins

Vd indicates Volts differential

Vppd indicates Volts peak-to-peak differential

Safety

This product is designed to meet the requirements of the following standard of safety for electrical equipment for measurement, control and laboratory use: EN 61010-1

Electromagnetic Compatibility

CE Marking EN 61326-1:1997 with A1:1998 and A2:2001 Compliant

FCC Part 15 (Class A) Compliant

Emissions

EN 55011	Radiated Emissions, ISM Group 1, Class A, distance 10 m, emissions < 1 GHz
EN 55011	Conducted Emissions, Class A, emissions < 30 MHz Immunity
EN 61000-4-2	Electrostatic Discharge (ESD), 4 kV by Contact, 8 kV by Air
EN 61000-4-3	RF Radiated Susceptibility, 10 V/m
EN 61000-4-4	Electrical Fast Transient Burst (EFTB), 2 kV AC Power Lines
EN 61000-4-5	Surge
EN 61000-4-6	Conducted Immunity
EN 61000-4-8	Power Frequency Magnetic Field, 30 A/m
EN 61000-4-11	Voltage Dips and Interrupts

CE Compliance

This product meets the necessary requirements of applicable European Directives for CE Marking as follows:

73/23/EEC Low Voltage Directive (Safety)

89/336/EEC Electromagnetic Compatibility Directive (EMC)

See Declaration of Conformity for this product for additional regulatory compliance information.

Copyright © 2017 LitePoint, A Teradyne Company.

All rights reserved

RESTRICTED RIGHTS LEGEND

No part of this document may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language or computer language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual, or otherwise, without the prior written permission of LitePoint Corporation.

DISCLAIMER

LitePoint Corporation makes no representations or warranties with respect to the contents of this manual or of the associated LitePoint Corporation products, and specifically disclaims any implied warranties of merchantability or fitness for any particular purpose. LitePoint Corporation shall under no circumstances be liable for incidental or consequential damages or related expenses resulting from the use of this product, even if it has been notified of the possibility of such damages.

If you find errors or problems with this documentation, please notify LitePoint Corporation at the address listed below. LitePoint Corporation does not guarantee that this document is errorfree. LitePoint Corporation reserves the right to make changes in specifications and other information contained in this document without prior notice.

TRADEMARKS

LitePoint and the LitePoint logo are registered trademarks of LitePoint Corporation. z475 is a trademark of LitePoint Corporation. All other trademarks or registered trademarks are owned by their respective owners.

CONTACT INFORMATION LitePoint Corporation

575 Maude Court Sunnyvale, CA 94085-2803 United States of America

+1.866.363.1911 +1.408.456.5000

LITEPOINT TECHNICAL SUPPORT www.litepoint.com/support

Doc: 1075-0117-001 June 2018 Rev 3