

A Teradyne Company

Wi-Fi 6 Updates

Essential Tests, Product Certification and New Spectrum on the Horizon

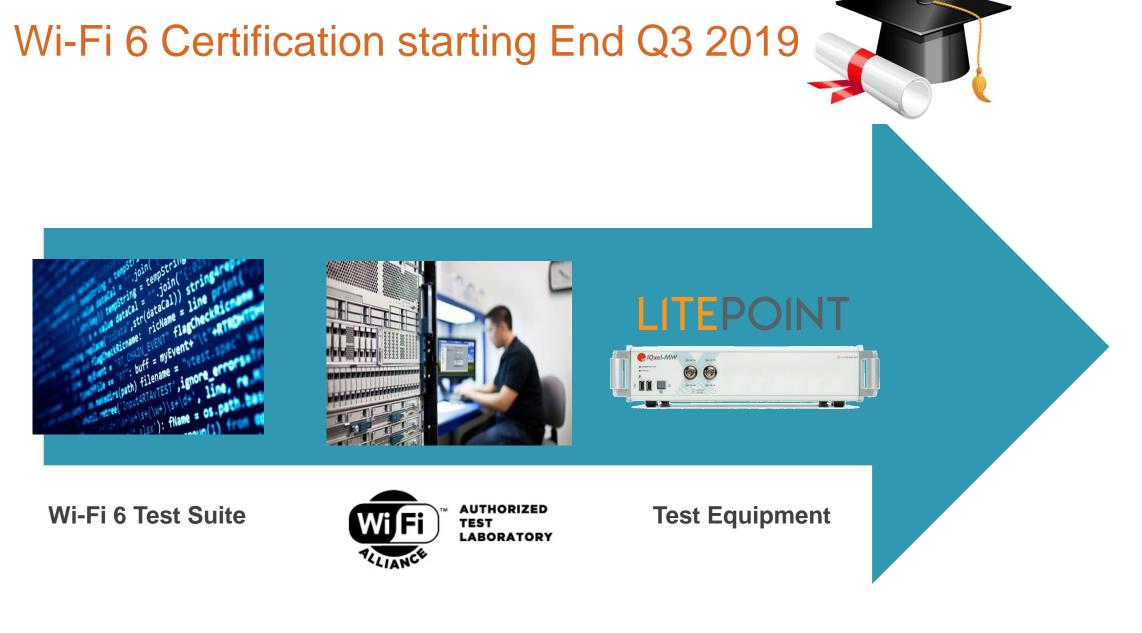
Wi-Fi Alliance

• Who are they?

- They invented the word Wi-Fi
- They are a network of member companies
- LitePoint is a member of the Wi-Fi Alliance
- They are responsible for defining certification: Wi-Fi CERTIFIED™
- Certification for products indicates that they have met industry-agreed standards for interoperability, security, and protocols
- The Wi-Fi Alliance has decided to introduce a simplified naming scheme for Wi-Fi standards to help users identify devices that provide the latest Wi-Fi experience

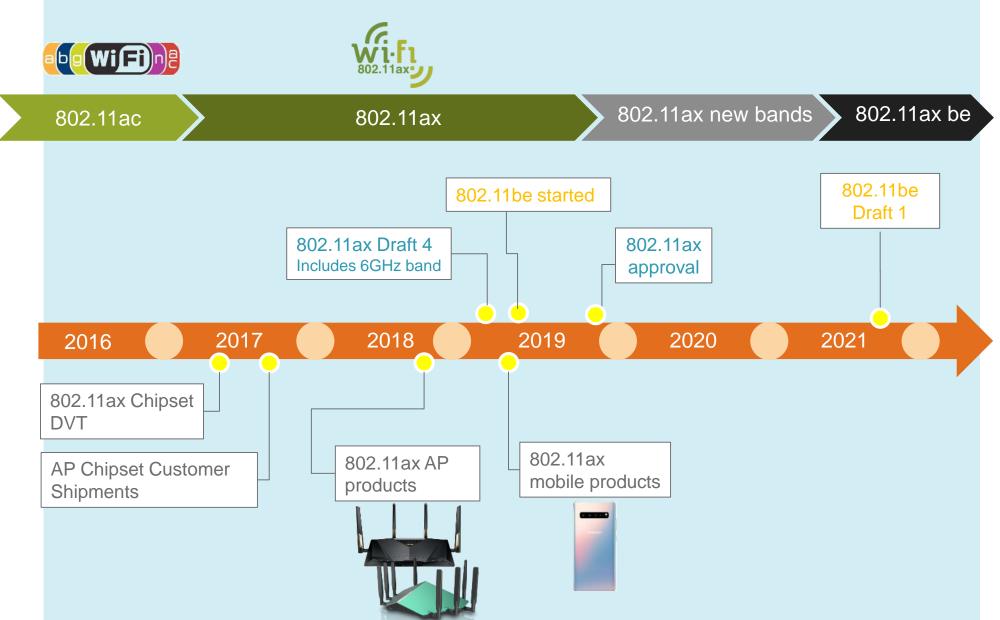
Wi-Fi 6: What Does the Naming Mean for You?

• In reality, very little – this is meant to help with consumer confusion to indicate generations of technology.

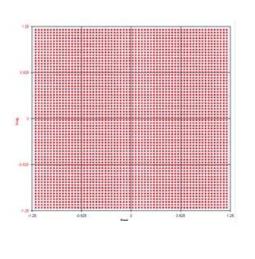

- 6 is a bigger number than 5, it must be better!

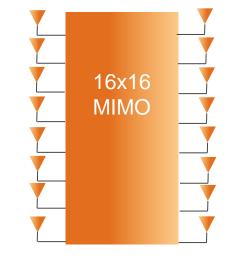
- Wi-Fi 6 to identify devices that support 802.11ax technology
- Wi-Fi 5 to identify devices that support 802.11ac technology
- Wi-Fi 4 to identify devices that support 802.11n technology

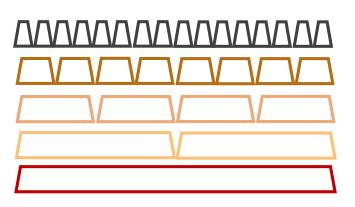
Generation of network connection	Sample user interface visual
Wi-Fi 6	56
Wi-Fi 5	5
Wi-Fi 4	3



IEEE Standard Timeline






802.11be EHT Extreme High Throughput EEEE

- Target Performance
- Low Latency: < 5 ms (full immersion VR)
- High Throughput: 30 Gbps
- Candidate Features:

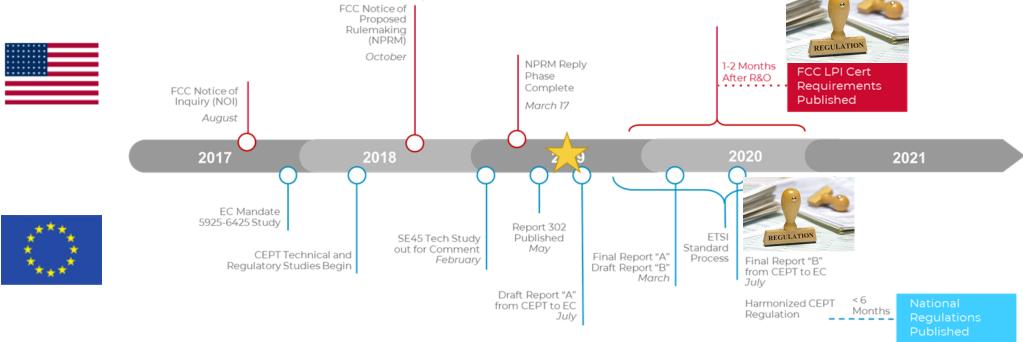
4096 QAM

320 MHz Channel Contiguous 320MHz / non-contiguous 320MHz (160+160 / 160+80+80 / 80+80+80+80 MHz)

FCC Federal Communications Commission

I ITFPOIN

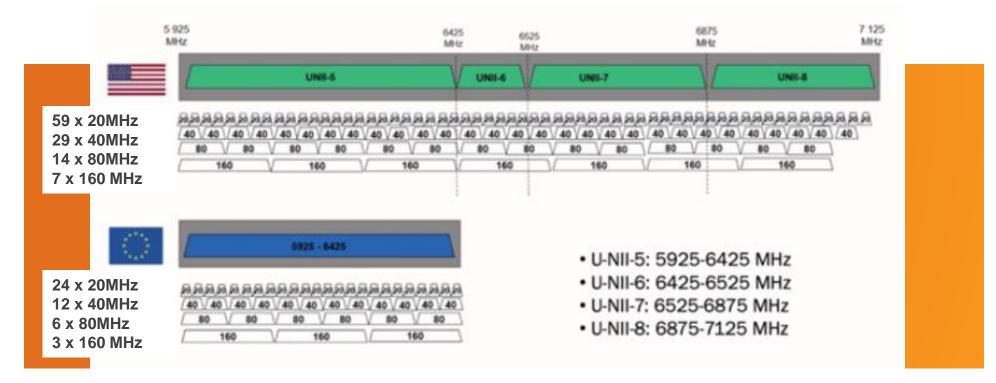
- Who are they?
- US Government agency in charge of regulating communications
- They assign RF spectrum allocation
- In October 2018 they announced a Notice of Proposed Rulemaking to promote new opportunities for unlicensed use in portions of the 1200 megahertz of spectrum in the 5.925-7.125 (6 GHz) band



Regulatory Update

US R&O expected completion 2019/2020

"The 6 GHz band can help drive the next generation of Wi-Fi, and I am optimistic that we will be able to make it available for unlicensed use in 2019" - FCC Chairman Ajit Pai


LITEPOINT

CEPT Response to EC Mandate & Harmonized Regulation by July 2020

802.11ax "6 GHz" Band Allocations

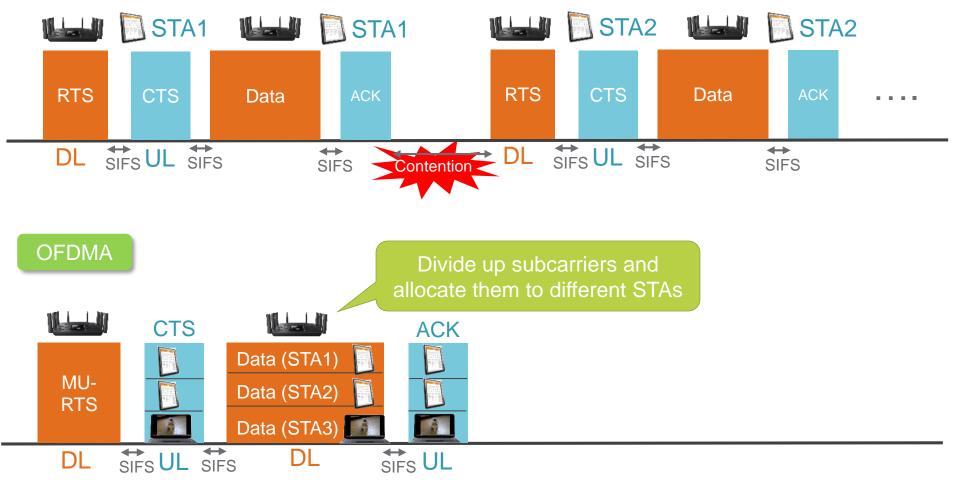
Some frequency bands may require reduced power for incumbent protection Some bands may required AFC (Automated Frequency Coordination) for incumbent protection

Refresher: Key Changes in Wi-Fi 6

L.h

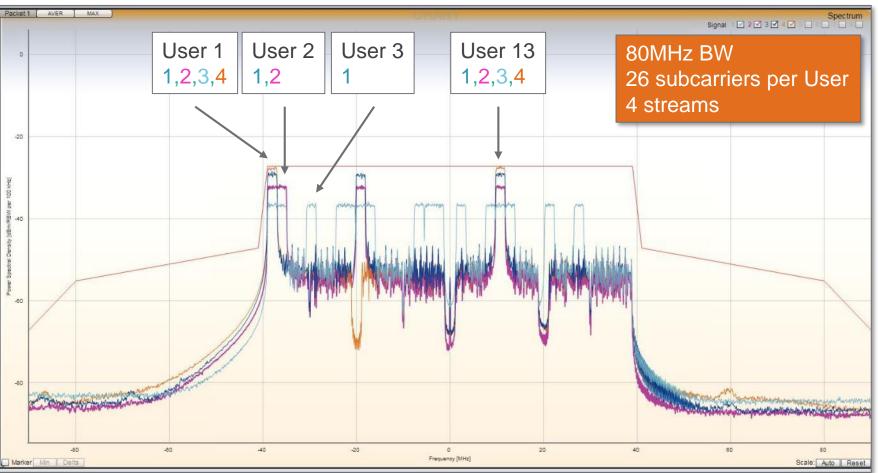
	802.11n	802.11ac	802.11ax	
Operating Bands	2.4 & 5GHz	5GHz	2.4 & 5GHz 6GHz*	*Optional
Fechnology	OFDM	OFDM	OFDMA	
MU-MIMO	No	DL MU-MIMO* DL / UL MU-MIMO*		*Optional
Subcarrier Spacing	312.5kHz	312.5kHz	78.125kHz	
Nodulation	64QAM	256QAM	1024QAM	
Jser Streams	4	Up to 8 use	er streams*	*Optional
Bandwidth	40 MHz	20, 40, 80, 80+8	80 and 160MHz	
		acting test: 1 or 2 moving to 4+ A configurations to te		

Wi-Fi 6 Essential Tests for OFDMA

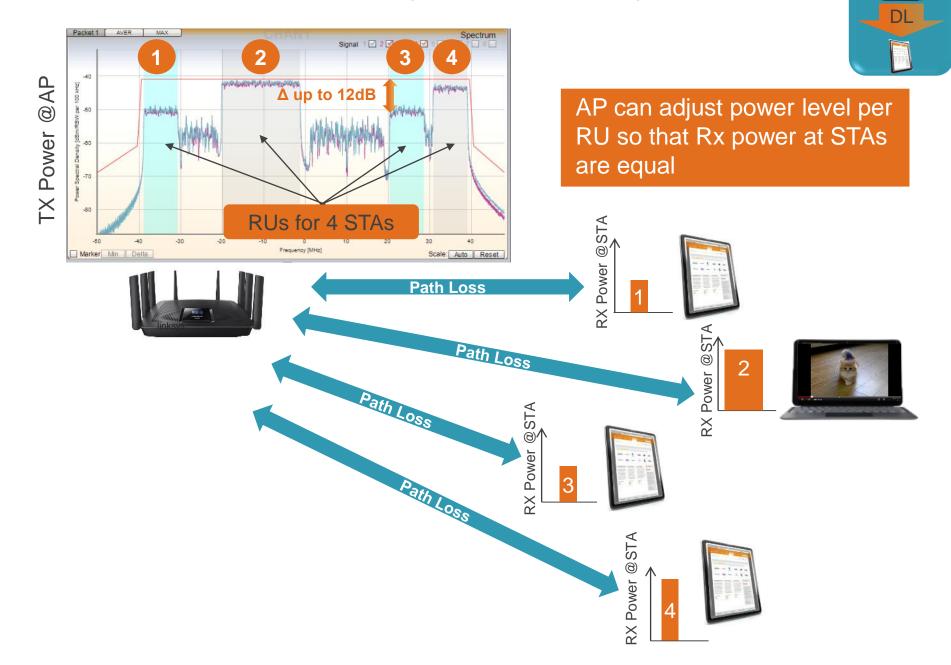


OFDM vs. OFDMA: Downlink

OFDMA improves overall network efficiency by serving multiple STAs

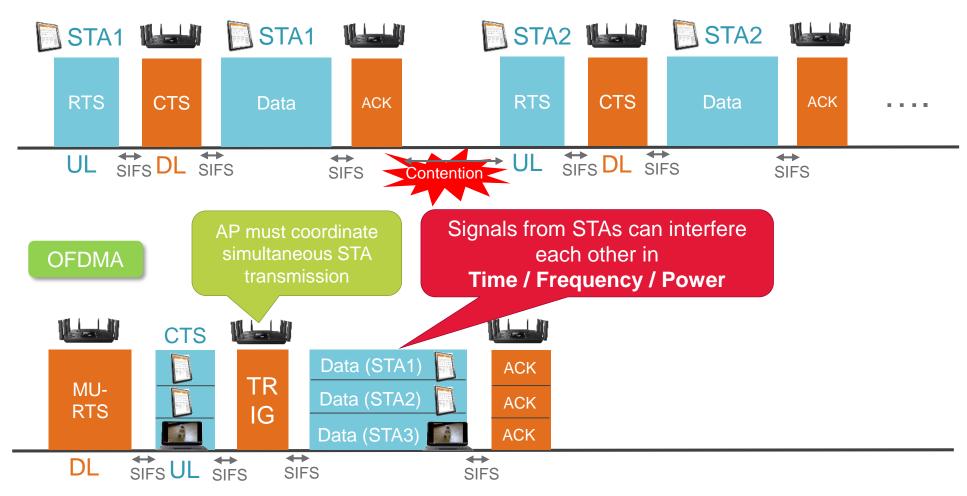

OFDM

OFDMA Brings Large Number of Test Permutations


- AP simultaneously serves multiple users
 - Varying # of users, RU combinations, # of streams

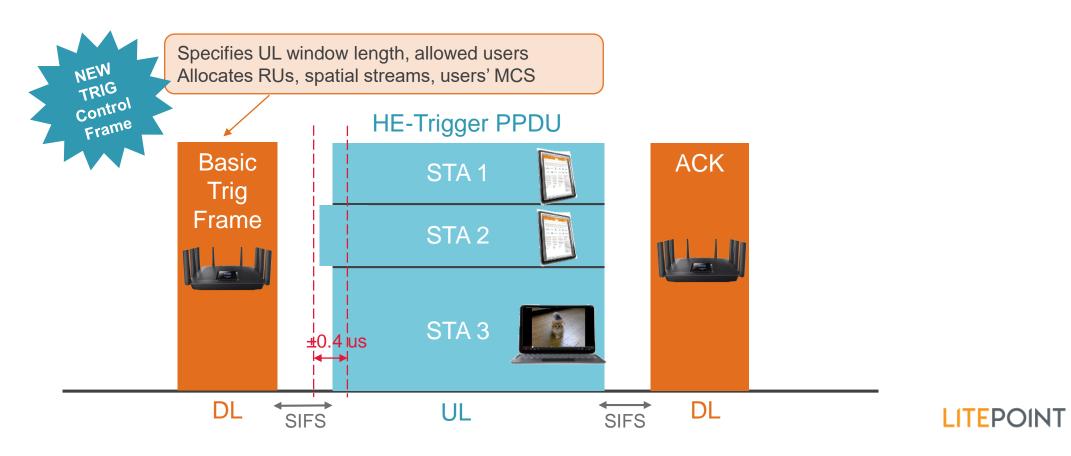
LITEPOINT

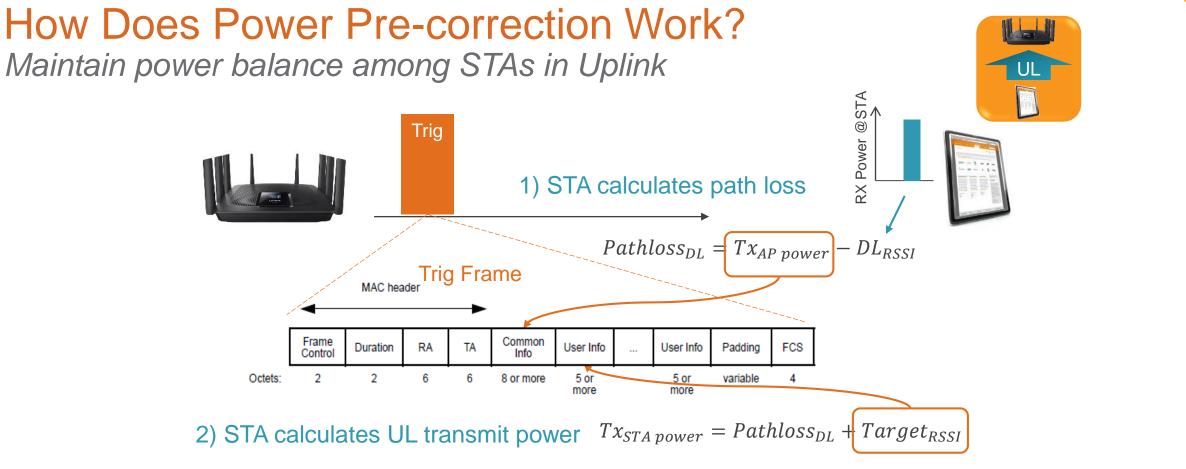
Multi-User OFDMA Power Control ("Power Boost")


LITEPOINT

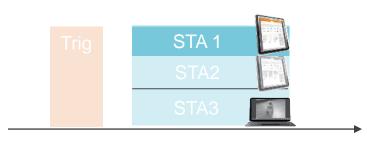
OFDM vs. OFDMA: Uplink

Uplink Tx requires precise frequency, timing, and power control


OFDM



AP as Mini Base Station


- AP pre-coordinates with STAs to minimize interference
 - Power balance among STAs Power
 - System synchchronization among STAs
 - 1) Transmit at the same time (< 0.4us difference) Timing
 - 2) Transmit at the same carrier frequency (<350 Hz difference) Frequency

3) STA sends HE TB PPDU in response to AP Trig at Tx STA power

Ensures STA power does not interfere with other participating STAs

STA Device Calibration More Stringent Requirement in 11ax

- Transmit power accuracy : For uplink Tx accuracy
- RSSI measurement accuracy : To correctly calculate path loss

Accurate power control is critical in ensuring power received from STAs at AP is equal

Damanatan	Minimum I	Requirement	Community
Parameter	Class A	Class B	Comments
Absolute transmit power accuracy	±3 dB	±9 dB	Accuracy of achieving a specified transmit power.
RSSI measurement accu- racy	±3 dB	±5 dB	The difference between the RSSI and the received power. Requirements are valid from minimum Rx to max-
			imum Rx input power.
Relative transmit power accuracy	N/A	±3 dB	Accuracy of achieving a change in transmit power for consecutive HE TB PPDU.
			The relative transmit power accuracy is applicable only to Class B devices.

802.11ax Draft 2.2 Table 28-43 STA power / RSSI Accuracy Requirements

11ax type test – UL OFDMA (STA)

Transmitter Tests

□Transmit spectrum mask(IEEE **28.3.18.1**) □Spectral Flatness(IEEE 28.3.18.2) □Transmit center frequency leakage(IEEE 28.3.18.4.2) □Transmit center frequency tolerance(IEEE **28.3.18.3**) □Symbol Clock frequency tolerance(IEEE 28.3.18.3) □Transmit constellation error(IEEE 28.3.18.4.3) □ Power Control Test(IEEE **28.3.14.3**) □ Transmitter modulation accuracy (EVM) test(IEEE 28.3.18.4.4) Residual CFO Test (IEEE **28.3.14.3**) □Timing Synchronization (IEEE28.3.14.3)

Receiver Tests

Minimum Input level (IEEE 28.3.17.2)
Maximum input level(IEEE 28.3.17.3)
Adjacent channel rejection(IEEE 28.3.17.4)
Non-Adjacent channel rejection(IEEE 28.3.17.4)
Sensitivity with MU DL signal (spec not

define but important)

LitePoint solutions for Wi-Fi 6

IQxel-MW 7G Product Family IQfact+ IQsniffer

First fully integrated tester for Wi-Fi 6 in the 6 GHz band

IQxel-M2W 7G for DVT

IQxel-M8W 7G for Mobile (STA) Manufacturing

IQxel-M16W 7G for Access Point Manufacturing

IQxel-M2W7G

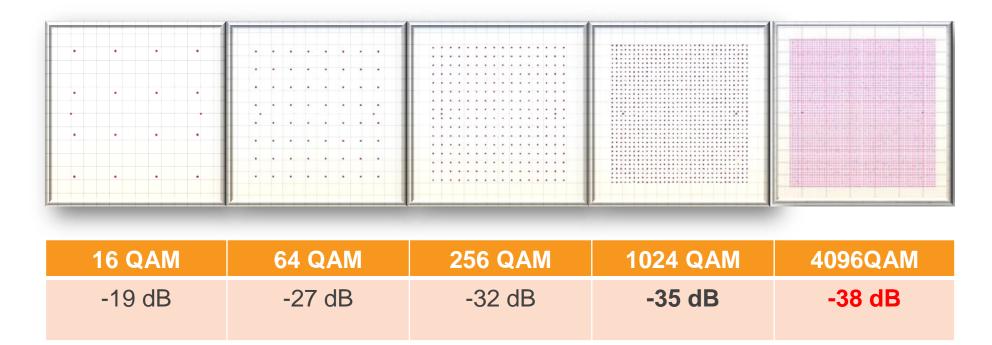
- For DVT
- 2 VSA/VSG and 2 ports active

IQxel-M8W7G

- For STA manufacturing
- Multi-DUT
- Configurations available:
 - 2x4: 2 VSA/VSG and 4 ports active
 - 2x8: 2 VSA/VSG and 8 ports active

IQxel-M16W7G

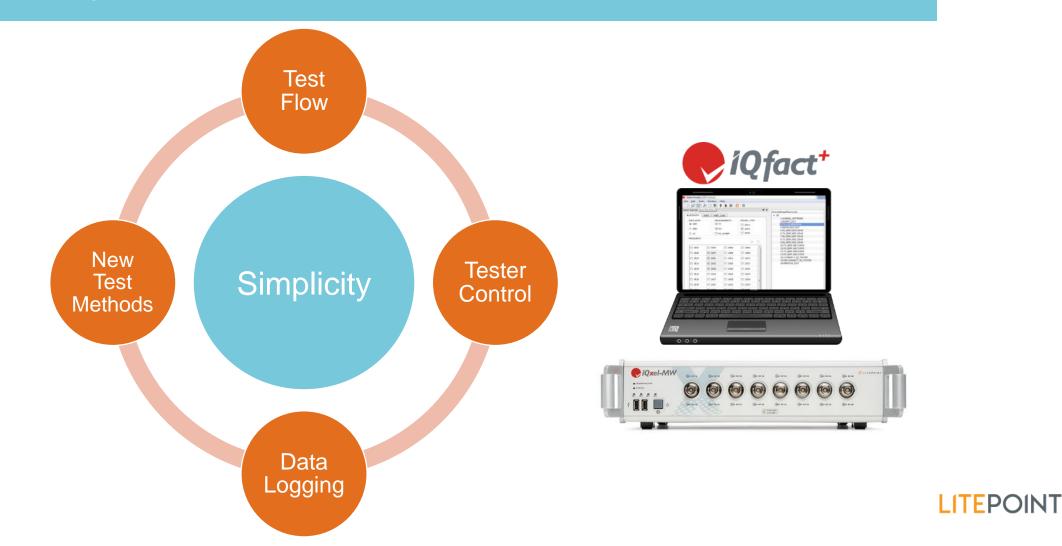
- For AP manufacturing
- Configurations available:
 - 4x4: 4 VSA/VSG and 4 ports active
 - 4x8: 4 VSA/VSG and 8 ports active
 - 4x16: 4 VSA/VSG and 16 ports active
- Designed for True MIMO testing up to 4x4 on a single unit and up to 8x8 with extension.


IQxel-MW 7G Product Highlights

The *IQxeI-MW 7G* is LitePoint's test solution for advanced Wi-Fi 6 testing on 2.4GHz, 5 GHz and 6 GHz frequency bands

- Frequency range from 400 MHz to 7300 MHz
- Addresses the requirements of the IEEE 802.11ax (Wi-Fi 6) and 802.11ac (Wi-Fi 5) specifications and tests all IEEE 802.11 legacy specifications
- Native support for per-port 160 MH, 80+80 MHz and future 160+160 MHz signal combinations
- Exceptional residual EVM performance for 1024 QAM
- Single-user OFDMA, Trigger based Test multi-user OFDMA, Uplink and Downlink testing with easy-toedit RU allocations
- Wi-Fi 6 Carrier Frequency Offset (CFO), power and timing control verification
- Tests all Bluetooth device standards (1.x, 2.x, 3.0, 4.x, 5) and the newly released BT 5.1
- Test support for DECT (ETSI EN 300 176-1), ZigBee, Z-Wave and WiSUN and LPWAN technologies LoRa and Sigfox

Higher Tester Performance for Linearity and Signal to Noise to make sure the EVM accuracy, so that insure the CPK and pass rate in MFG



IQxel-MW 7G EVM accuracy < -48dB in loopback measurement with LTF channel estimation, and reach up to < -51dB with full packet channel estimation.

Automation Reduces 802.11ax Test Complexity

11ax has more test combinations and test requirements than previous Wi-Fi standards

Creating 11ax Test Flow for AP with

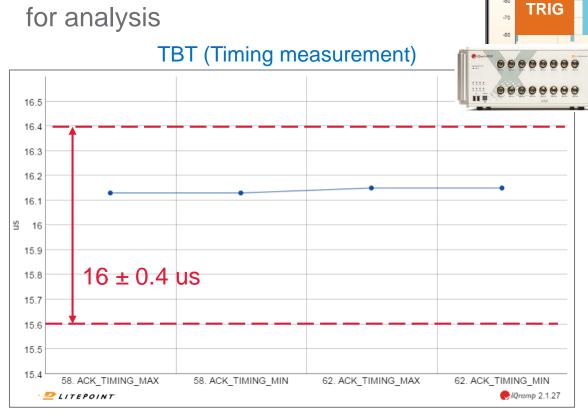
♥ IQfactStudio		_	P Garant Halles		Gines Gan		-		
File Edit Tools Window Help									
	Ve	ormal		🗋 Nurr	nber of Runs: 1				
Configure RU allocat	tion for	Input F	Parameters						
HE-MU			er 🔹		Change All				
		^	Name		Value		Туре	Unit ^	
3.INITIALIZE_DUT		1	TEST_CATEGORY	AP_TX	_DL_OFDMA	Stri	ng		
4.CONNECT_IQ_TESTER 5.LOAD_PATH_LOSS_TABLE		2	NUM_USERS	5		- I.	egei		– 5 Users
6.TEST_VERIFY EVM POWER 5180 MCS11 7.TEST_VERIFY EVM POWER 5600 MCS11	-	3	PACKET_FORMAT	HE_M	U	Stri	ing	_	
8.TEST_VERIFY EVM POWER 5700 MCS11 9.TEST_VERIFY PER 5180 MCS9 HE_SU BW	-	4	BSS_BANDWIDTH	BW-80)	Stri	ng	MHz	
10.TEST_VERIFY PER 5600 MCS9 HE_SU B 11.TEST_VERIFY PER 5700 MCS9 HE_SU B	W-20 ANT1	5	CH_BANDWIDTH	CBW-8	80	Stri	ing	MHz	
12.TEST_VERIFY SENS 5180 MCS9 HE_SU	BW-20 ANT1	6	BSS_FREQ_MHZ_PRIMARY	5520		Inte	eger	MHz	
13.TEST_VERIFY SENS 5600 MCS9 HE_SU 14.TEST_VERIFY SENS 5700 MCS9 HE_SU		7	CH_FREQ_MHZ	5520		Inte	eger	MHz	
15.TEST_BUILD 5520 HE_MU BW-80 ANT 16.ADD USER1 MCS0 EVM MASK	1 ANT2 ANT3 ANT4	8	NUM_USERS_PER_RU	1,0,0,0	,0,0,0,1,0 0,0,0,0,1,0,0	0,0,0 Stri	ng		
17.ADD_USER 2 MCS0 EVM MASK 18.ADD_USER 3 MCS0 EVM MASK		9	RU_ALLOCATION_SIGNALING	RUx9 ((00000000) 26-26-26-	·26-2 Stri	ng		
19.ADD_USER 4 MCS0 EVM MASK	VIFI 11AX		CTOFALL ALLOCATION		- 10 M			3 10.000	
20.ADD_USER 5 MCS0 EVM MASK 21.TEST_RUN						_			
22.TEST_BUILD 5520 HE_MU BW-40 At	BSS_BANDWIDTH BW-80	•			1				
23.ADD_USER 1 MCS0 PER 24.ADD_USER 2 MCS0 PER		_	1st 20MHz		2nd 20Mhz	26 RU for 1s		3rd 20Mhz	4th 20Mhz
25.ADD_USER 3 MCS0 PER	RU_ALLOCATION_SIGNALIN	G RL	Jx9 (00000000) 26-26-26-26-26-26-26-2	.6-26 🔻	RUx9 (00000000) 2 🔻	RUx0 (* 🔻	RUx9 (00000000) 26-26-26 🔻	RUx9 (0000000) 26-26-26 🔻
26.TEST_RUN	NUM_USERS_PER_RU	1,0	0,0,0,0,0,0,1,0		0,0,0,0,1,0,0,0,0		0,0,0,0	,0,0,0,1,0	0,0,1,0,0,0,0,0,0
27.DISCONNECT_IQ_TESTER 28.REMOVE_DUT	STREAM_ALLOCATION								
			0000000) 26-26-26-26-26-26-26-26-26 26-26-26-26-26-26-26 RUx9 (00000000)			26-26-26-26-2	16 RUx0	(********) NA RUx9 ((0000000)
	NUM_USERS_PER_RU 1,0,0,0,	0,0,0,1	1,0 0,0,0,0,1,0,0,0,0 0,0,0,0,0,0,0,1,0	0,0,1,0),0,0,0,0,0				
	STREAM_ALLOCATION								
									Apply

LITEPOINT

Creating 11ax Test Flow for AP with

🕼 🕞 🏃 🗊 🎼 🏌 🦊 🗙 🖪 🔯 Execution Mode	: Normal	`		Number of Runs: 1	-
Litepoint\IQfact_plus\IQfact+_BRCM_4375_MPS_4.0.0.7\bin\Examp		Parameters			
WIFI_11AX	No filt	ter	•	Change All	
1.GLOBAL_SETTINGS		Name	Value	Type Unit	
2.INSERT_DUT 3.INITIALIZE_DUT					
4.CONNECT IQ TESTER	1	USER_INDEX	2	Integer	
5.LOAD_PATH_LOSS_TABLE	2	MEASUREMENTS	E,M	String	
6.TEST_VERIFY EVM POWER 5180 MCS11 HE_SU BW-20 ANT1	-	MERSONEMENTS	L, IVI	Stilling	
7.TEST_VERIFY EVM POWER 5600 MCS11 HE_SU BW-20 ANT1	3	DATA_RATE	MCS11	String	
8.TEST_VERIFY EVM POWER 5700 MCS11 HE_SU BW-20 ANT1				•	Different for
9.TEST_VERIFY PER 5180 MCS9 HE_SU BW-20 ANT1	4	NUM_STREAMS	2	Integer	Different for
10.TEST_VERIFY PER 5600 MCS9 HE_SU BW-20 ANT1	5	TX_POWER_DBM	15	Double	each RU / user
11.TEST_VERIFY PER 5700 MCS9 HE_SU BW-20 ANT1	_				
12.TEST_VERIFY SENS 5180 MCS9 HE_SU BW-20 ANT1	6	PSDU_LENGTH	1000	Integer	
13.TEST_VERIFY SENS 5600 MCS9 HE_SU BW-20 ANT1	-		7		
14.TEST_VERIFY SENS 5700 MCS9 HE_SU BW-20 ANT1	7	RU_INDEX	7	Integer	
15.TEST_BUILD 5520 HE_MU BW-80 ANT1 ANT2 ANT3 ANT4	8	START_STREAM_INDEX	K 1	Ţ	
16.ADD_USER 1 MCS0 EVM MASK					-
17.ADD_USER 2 MCS11 EVM MASK	9	PACKET_EXTENSION	1.6e-005	 Set up r 	parameters for
18.ADD_USER 3 MCS0 EVM MASK 19.ADD_USER 4 MCS0 EVM MASK	10	DCM	0		
20.ADD_USER 5 MCS0 EVM MASK	10	DCIVI	U	each us	er
21.TEST RUN	11	CODING_TYPE	LDPC	Define t	act types and
22.TEST_BUILD 5520 HE_MU BW-40 ANT1 ANT2 ANT3 ANT4		-		• Denne i	est types and
23.ADD_USER 1 MCS0 PER	12	MAC_ADDRESS		conditio	ns
24.ADD_USER 2 MCS0 PER	13	OPTION_STRING		Conditio	113
25.ADD_USER 3 MCS0 PER	15	OPTION_STRING			
26.TEST_RUN	14	STA_ID		String	
27.DISCONNECT_IQ_TESTER					
28.REMOVE_DUT	15	USER_ENABLED	(1)	String	

IQfact+ Data Example: Trigger Based Testing


IQfact+ automatically handles precise timing control necessary for TBT

1. Tester VSG: Transmit a Trigger frame

Export IQVSG

-80

- 2. Tester switches VSG to VSA
- 3. Tester VSA captures HE-TB from STA for analysis

Power vs. Time

1.6

Scale: Auto Reset

Signal 1 2 3 4 5 6

1.2

1.4

HE-TB PPDU

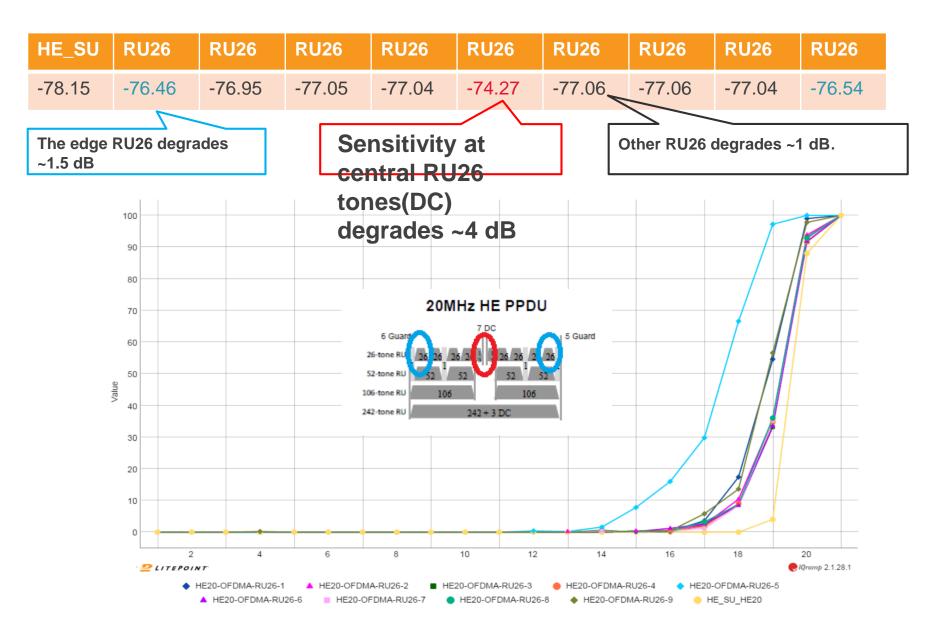
0.6

Configuring Trigger Based Test with **OpiQfact**

e Edit Tools Window Help] 🖗 🕞 🎤 🗊 🎼 🏌 🦊 🗙 🔼 😡 🗄 Exe	cution Mode	: Normal	- •	lumber of Runs:	1]	
:\Litepoint\IQfact_plus\IQfact+_BRCM_4375_MPS_4.0.0.7	Input	Parameters					
34.ADD_MU_USER EVM MASK POWER S	No fi	lter 🔻			Chang		
35.SEQ_TEST_RUN		tter 🔹			Chang	JE All	
36.SEQ_TEST_BUILD 5180 BW-20 ANT1		Name	Value	Туре	Unit	*	
37.ADD_MU_STEP_HE_SU	1	DACKET FORMAT	VHT	Ch.i.e.			
38.ADD_MU_USER EVM MASK POWER S	1	PACKET_FORMAT	VHI	String			
39.SEQ_TEST_RUN	2	OPTION STRING		String			
40.SEQ_TEST_BUILD 5180 BW-20 ANT1 ANT2	-	or nongonate		String		_	
41.ADD_MU_STEP_VHT	3	BSS_COLOR	0	Integer			
42.ADD_MU_USER EVM MASK POWER S							
43.SEQ_TEST_RUN	4	GI_LTF_TYPE	1	Integer			
44.SEQ_TEST_BUILD 5180 BW-20 ANT1 ANT2	-	CTRC	0				
45.ADD_MU_STEP_HE_MU	5	STBC	0	Integer			
46.ADD_MU_USER PER 1 MCS0	6	TFR_NUM_USERS	1	Integer			
47.ADD_MU_USER PER 2 MCS7		ini_itom_oozito	-	integer		_	
48.ADD_MU_STEP_HE_MU	7	TFR_MPAD	0	Integer			Sets AF
49.ADD_MU_USER SENS 1 MCS7						_	
50.ADD_MU_USER SENS 2 MCS9	8	TFR_COMM_AP_TX_POW	10	Integer		=	in Trigg
51.SEQ_TEST_RUN		TED COMMA RANDWIDTH	0	Internet			
52.SEQ_TEST_BUILD_5180 BW-20 ANT1 ANT2	9	TFR_COMM_BANDWIDTH	0	Integer			(dBm)
53.ADD MU STEP HE MU	10	TFR_COMM_GILTF_TYPE	1	Integer			
54.ADD_MU_USER PER 1 MCS0		in Quen grine	-	integer		_	
55.ADD_MU_USER PER 2 MCS7	11	TFR_COMM_NLTF	2	Integer			
56.ADD_MU_STEP_HE_MU				-		_	
57.ADD MU USER SENS 1 MCS7	12	TFR_COMM_LENGTH	250	Integer			
58.ADD_MU_USER SENS 2 MCS9	13		1	Tete			
59.SEQ_TEST_RUN	13	TFR_COMM_ESLDPC	1	Integer			
60.SEQ_TEST_BUILD 5520 BW-80 ANT1	14	CAPTURE_COUNT	1	Integer			
61.ADD MU STEP HE MU	14	c ronz_coortr	-	integer		_	
62.ADD_MU_USER PER 1 MCS5	15	PACKET_SKIP_COUNT	1	Integer			
63.ADD_MU_USER PER 2 MCS11				-			
64.SEQ_TEST_RUN	16	TFR_COMM_AFAC	4	Integer			
65.DISCONNECT_IQ_TESTER	17		•	1			
66.REMOVE_DUT	17	TFR_COMM_PED	0	Integer		Ŧ	

Tx power frame

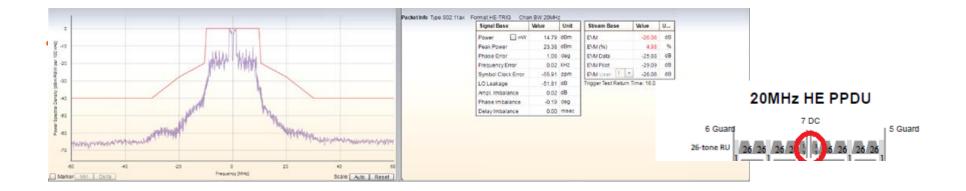
Configuring Trigger Based Test with **Offect**

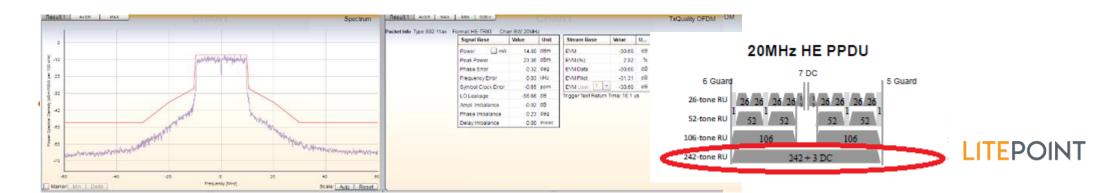

e F

2factStudio						
Edit Tools Window Help						
) 🖗 🕞 🏃 🗊 🎼 🏌 🦊 🗙 📴 Execu	tion Mode:	Normal		umber of Runs	: 1	
Litepoint\IQfact_plus\IQfact+_BRCM_4375_MPS_4.0.0.7	-Input P	arameters				
34.ADD_MU_USER EVM MASK POWER S	No filt	er 🔹	-		Chang	je A
35.SEQ_TEST_RUN				-		
36.SEQ_TEST_BUILD 5180 BW-20 ANT1		Name	Value	Туре	Unit	_
37.ADD_MU_STEP HE_SU	1	USER_INDEX	1	Integer		
38.ADD_MU_USER EVM MASK POWER S				-		-1
39.SEQ_TEST_RUN	2	MEASUREMENTS	E,M,P,S	String		
40.SEQ_TEST_BUILD 5180 BW-20 ANT1 ANT2	3	DATA RATE	MCS6	String		
41.ADD_MU_STEP_VHT		DAIA_NAIL	WIC30	Sung		
42.ADD_MU_USER EVM MASK POWER S	4	NUM_STREAMS	1	Integer		
43.SEQ_TEST_RUN 44.SEQ_TEST_BUILD_5180 BW-20 ANT1 ANT2						-1
44.3EQ_TEST_BOILD_SIG0 BW-20 ANTI ANTZ 45.ADD MU STEP HE MU	5	TX_POWER_DBM	0	Double		
46.ADD_MU_USER PER 1 MCS0	6	RX_POWER_DBM	-65	Double		1
47.ADD_MU_USER PER 2 MCS7	Ů		05			-1
48.ADD MU STEP HE MU	7	RU_INDEX	2	Integer		
49.ADD MU USER SENS 1 MCS7				-		-1
50.ADD_MU_USER SENS 2 MCS9	8	START_STREAM_INDEX	1	Integer		
51.SEQ_TEST_RUN	9	SYM CLOCK ERROR	0	Integer		
52.SEQ_TEST_BUILD 5180 BW-20 ANT1 ANT2	-		·	integer		-17
53.ADD_MU_STEP_HE_MU	10	TIMING_ERROR	1	Integer		
54.ADD_MU_USER PER 1 MCS0						-1
55.ADD_MU_USER PER 2 MCS7	11	USER_ENABLED	(1)	String		
56.ADD_MU_STEP_HE_MU	12	CFO_ERROR	1	Integer		
57.ADD_MU_USER SENS 1 MCS7	12	Cro_childh	•	integer		
58.ADD_MU_USER SENS 2 MCS9	13	PACKET_EXTENSION	1.6e-005	Double		
59.SEQ_TEST_RUN						
60.SEQ_TEST_BUILD 5520 BW-80 ANT1	14	DCM	0	Integer		
61.ADD_MU_STEP_HE_MU	15	CODING TYPE	BCC	String		
62.ADD_MU_USER PER 1 MCS5	15	CODING_TIPE	bee	Jung		
63.ADD_MU_USER PER 2 MCS11 64.SEQ_TEST_RUN	16	MAC_ADDRESS	000000C0FFEE	String		
65.DISCONNECT IQ TESTER						
66.REMOVE DUT	17	STA_ID	001	String		

Sets target Rx signal power in Trigger frame (dBm)

DL-OFDMA for STA receiver sensitivity testing

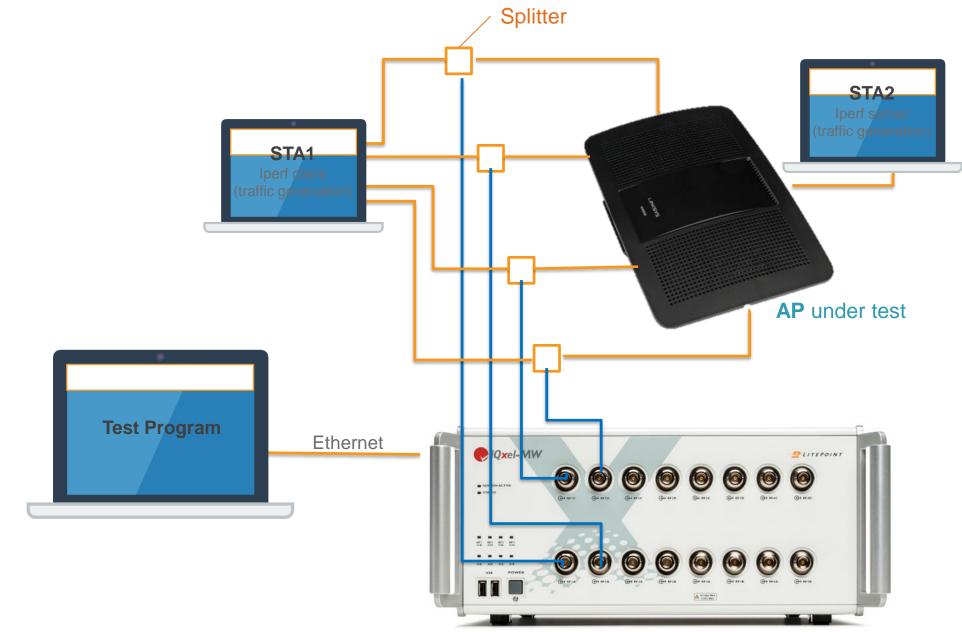




TX UL-OFDMA for STA EVM

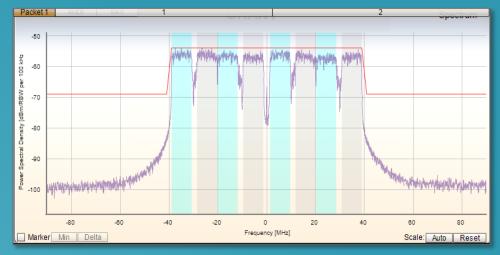
• E VM -34.34dB, power 14.12dBm

IQsniffer – WiFi PHY Traffic Analysis Simplified



- IQsniffer is useful for product characterization and Pre-correction test
- Key Features:
 - PHY layer analysis: Uncovers timing information and behavior not visible at MAC layer Parametric measurements(EVM, Power, Spectrum, etc.) Timing information PPDU information: packet format, coding, spatial stream info
 - MAC layer information available:

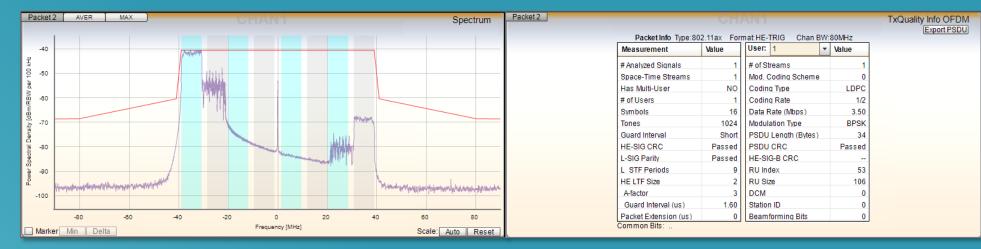
Packet type, sub-type MAC address(es) Whole PSDU



IQsniffer PHY Traffic Monitoring (4x4) on IQxel-MW

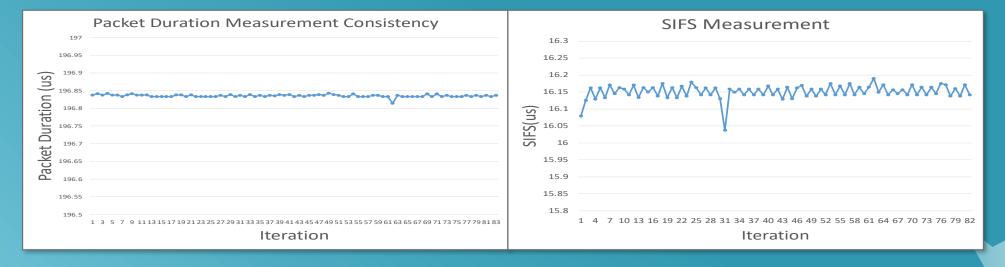
LITEPOINT

Using IQsniffer: PHY Parameters for 802.11ax HE-MU



User	RU ldx	RU Size	Mod Ty	MCS	#Stream	EVM (dB)	Power (dBm)
1	1	106	BPSK	0	1	-42.65	-36.95
2	2	106	BPSK	0	1	-42.13	-36.92
3	3	106	BPSK	0	1	-42.03	-37.41
4	4	106	BPSK	0	1	-41.74	-37.90
5	5	106	BPSK	0	1	-42.57	-37.12
6	6	106	BPSK	0	1	-41.88	-37.35
7	7	106	BPSK	0	1	-40.88	-38.24
В	8	106	BPSK	0	1	-41.47	-37.63

Packe


Packet 1		CH	AN1	Tx	Quality Info OFDM
	Packet Info Type:80	Export PSDU			
	Measurement	Value	User: 1	Value	
	# Analyzed Signals	1	# of Streams	1	
	Space-Time Streams	1	Mod. Coding Scheme	0	
	Has Multi-User	Yes	Coding Type	LDPC	
	# of Users	8	Coding Rate	1/2	
	Symbols	7	Data Rate (Mbps)	3.80	
	Tones	1024	Modulation Type	BPSK	
	Guard Interval	Long	PSDU Length (Bytes)	38	
	HE-SIG CRC	Passed	PSDU CRC	Passed	
	L-SIG Parity	Passed	HE-SIG-B CRC	Passed	
	L STF Periods	10	RU Index	1	
	HE LTF Size	2	RU Size	106	
	A-factor	3	DCM	0	
	Guard Interval (us)	0.80	Station ID	53	
	Packet Extension (us)	0	Beamforming Bits	0	

Using IQsniffer: PHY Parameters for 802.11ax HE-TRIG

IQsniffer Packet Duration Measurement

IQsniffer SIFS Measurement

