

A Teradyne Company

Wi-Fi 6 Updates

Wi-Fi 6 rollout updates, product certification, and preparation for new unlicensed spectrum

Wi-Fi 6 Networks and Devices are Rolling Out

NFL's biggest stadium will open with Wi-Fi 6

SoFi Stadium, where the LA Chargers and LA Rams will play starting next year, is getting the latest wireless service from Cisco.

Corinne Reichert D November 1, 2019 5:54 PM PDT

0 0

The iPhone 11 supports Wi-Fi 6. Here's what that means for you

The iPhone 11, 11 Pro and 11 Pro Max are the newest phones that support next-gen Wi-Fi 6 connections. Here's what you should know about that.

ES 🖗 []

Extreme Networks' Wi-Fi 6 network goes live at BBVA Stadium in Houston

[NEWS GLOBAL] by Claus Hetting | September 18, 2019

upport for WI-FI 6.

Why Wi-Fi 6? U.S Super Bowl Wi-Fi Traffic Evolution

HIGH DENSITY WI-FI

 Wi-Fi 6 improves Throughput and Latency in high density environments

✓ Wi-Fi 6 is the perfect technology to sustain traffic growth

LITEPOINT

Wi-Fi 6 By The Numbers

- WiFi Alliance estimates that more than 13 billion Wi-Fi devices are being used worldwide currently, and the penetration rate of household Wi-Fi networks will reach 90% by 2020.
- Over 50% of global Wi-Fi devices in use in 2024 will support Wi-Fi 6 technology, WFA estimates.
- The penetration rate of Wi-Fi 6 technology is expected to reach 10% in 2020, with smartphone applications pioneering the adoption, followed by notebooks and smart household devices, according to industry sources.
- By 2022, about 56% connected end-devices will support Wi-Fi 6, Intel has estimated. It also noted that all new notebook models being developed by Lenovo, Dell, Acer and Asustek Computer will incorporate this new technology.

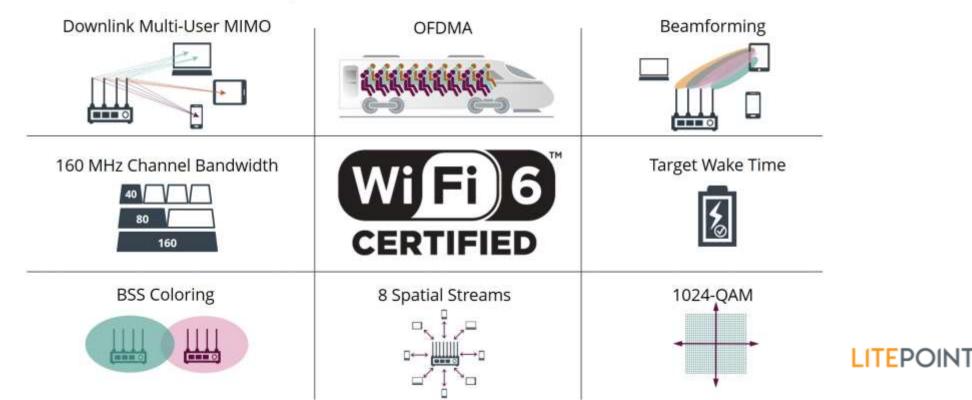
Refresher: Key Changes in Wi-Fi 6

L.h

	802.11n	802.11ac	802.11ax	_
Operating Bands	2.4 & 5GHz	5GHz	2.4 & 5GHz 6GHz*	*Optional
Technology	OFDM	OFDM	OFDMA	
MU-MIMO	No	DL MU-MIMO*	DL / UL MU-MIMO*	*Optional
Subcarrier Spacing	312.5kHz	312.5kHz	78.125kHz	
Modulation	64QAM	256QAM	1024QAM	
User Streams	4	Up to 8 us	er streams*	*Optional
Bandwidth	40 MHz	20, 40, 80, 80+	80 and 160MHz	
K		1 or 2 moving to 4- configurations to te g control		

Wi-Fi 6 Certification

0 0


O

0

Wi-Fi CERTIFIED 6[™]: What does it mean?

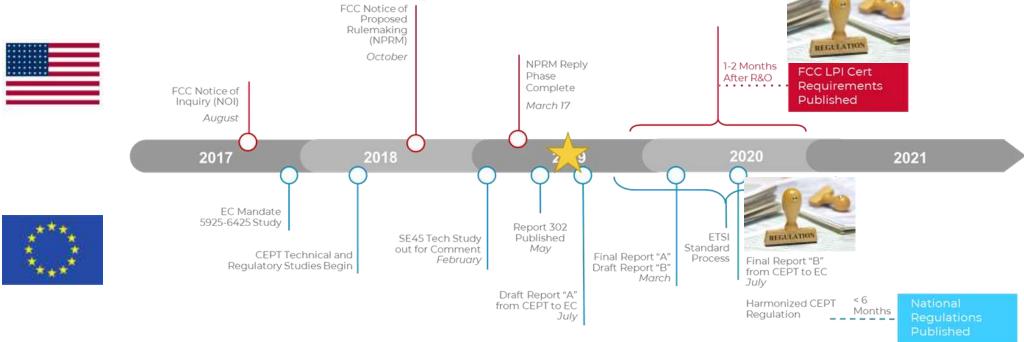
- Certification program from Wi-Fi Alliance is now available and delivers the best user experience with devices based on IEEE 802.11ax
- Product vendors and service providers can trust <u>Wi-Fi CERTIFIED™</u> will distinguish Wi-Fi 6 products and networks that meet the highest standards for security and interoperability

Wi-Fi CERTIFIED 6[™] key features

Source: Wi-Fi Alliance

- ✓ IQxel-MW support OFDMA Pre-correction test for Wi-Fi 6 Certification
- ✓OFDMA Pre-correction test is one of the key features for testing Uplink OFDMA interoperability
- Authorized Test Labs for certification testing and Wi-Fi equipment vendors for pre-certification testing

Wi-Fi in Unlicensed 6 GHz Spectrum

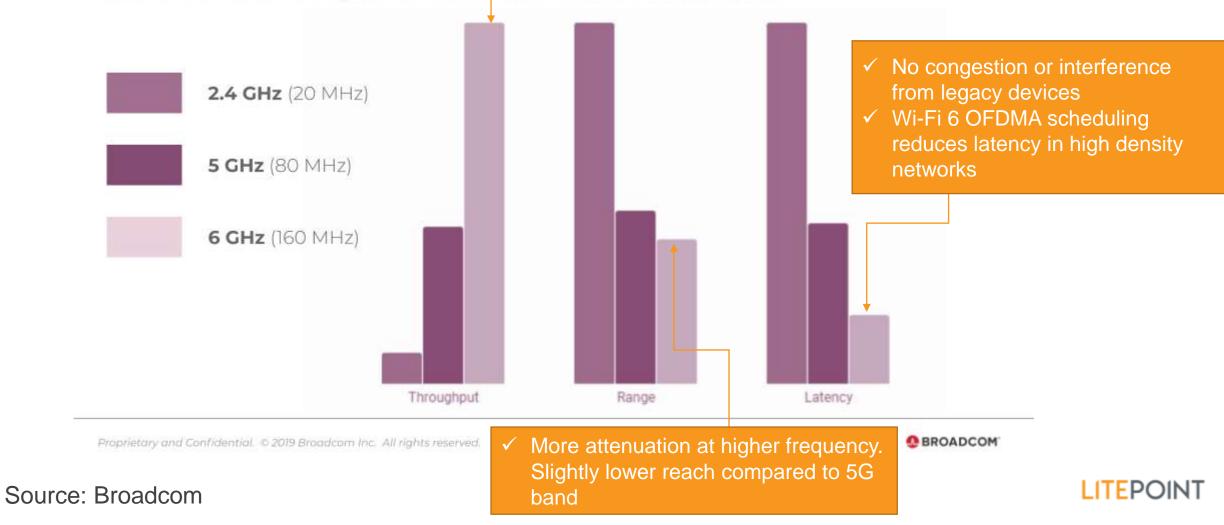


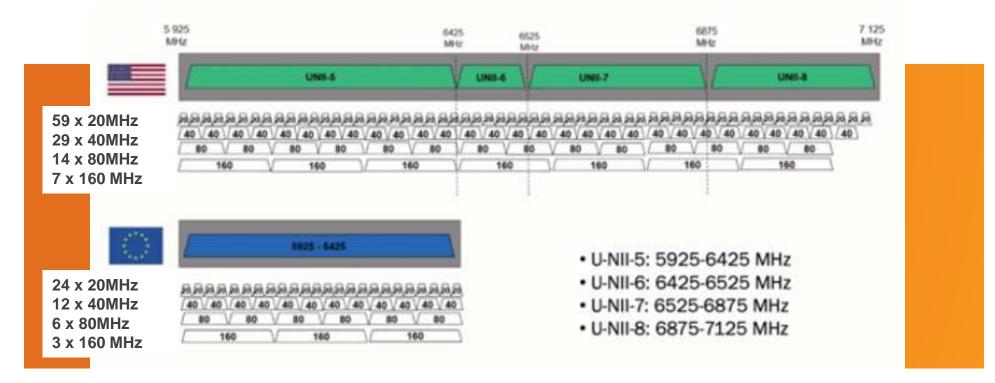
Regulatory Update

US R&O expected completion 2019/2020

"The 6 GHz band can help drive the next generation of Wi-Fi, and I am optimistic that we will be able to make it available for unlicensed use in 2019" - FCC Chairman Ajit Pai

CEPT Response to EC Mandate & Harmonized Regulation by July 2020




Why 6GHz Wi-Fi?

 Double the speed thanks to 160 MHz channels
 No Legacy (802.11a,b,g,n) Wi-Fi device allowed to operate in 6GHz band

Boost Wi-Fi performance with 6 GHz

6 GHz Band WiFi 6 Allocations

Some frequency bands may require reduced power for incumbent protection Some bands may required AFC (Automated Frequency Coordination) for incumbent protection

Channelization in 6 GHz

Center Freq (MHz) 20 MHz channels 40 MHz channels 80 MHz channels 160 MHz channels

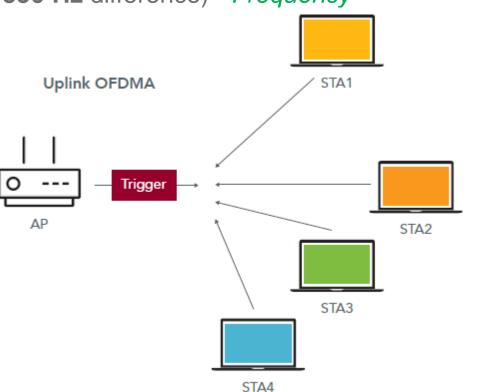
												U-I	NII	-5													U-	NII-	·6								U-I	NII	-7											ι	J-N	-8	8				
lz)	5945	5965	5985	6005 2022	<u>6025</u>	6045	6065	6085	6105	6125	6145				62.25	6245			6305	6325	6345	6365	6385	6405	6425	6445	6465		6505	l io	6545	6565	6585	6605	6625 6625	0040 6665	6685	6705	6725	6745	6765	6785	6805	6825 50.45	6865	6885	6905	6925	6945 6945	6965	6985 7005	200/	7045	7065	7085	7105	C71/
S	189	<u>193</u>	197		205	209	213	217	221	275	920	<mark>233</mark>	737	271	245	249	213	257	261	265	269	273	277	<mark>281</mark>	285	<mark>289</mark>	293	297 297	301	305	309	313	317	321	325	222	337	341	345	349	353	357	361 361	365	373	377	381	<mark>385</mark>	389	393	397		409 409	413	417	421	
-																																																							Щ	4	
S	19	91	19	9	20	7	21	15	2	23	2	31	2	239	2	47	2	15	2	63	27	1	27	<u>'9</u>	2	87	2	295	3	03	3	11	31	.9	327	13	335	3	43	35	51	35	9 3	367	/ 3	75	3	83	391	1 3	399	9 4	107	41	.5		
s		19	5			21	11			2	27			2	243			2	59			27	75			2	91			3	07			32	3		3	39			35	5			371			38	37		4	403					
ī. [
els [2	03							2	35							2	57							2	99						3	331							363	3						395	5			Π		П	
																													Π																												
																																							\square																		

- Starting frequency of 5940 MHz
 - Only 10 MHz of Guard band for U-NII-5
 - Challenging filter design
- Channels can cross U-NII boundaries
- In case U-NII-5 and 6 work under different regulatory rules
 - No 80 MHz channel in U-NII-6
 - Only one 40 MHz channel in U-NII-6

Source: IEEE

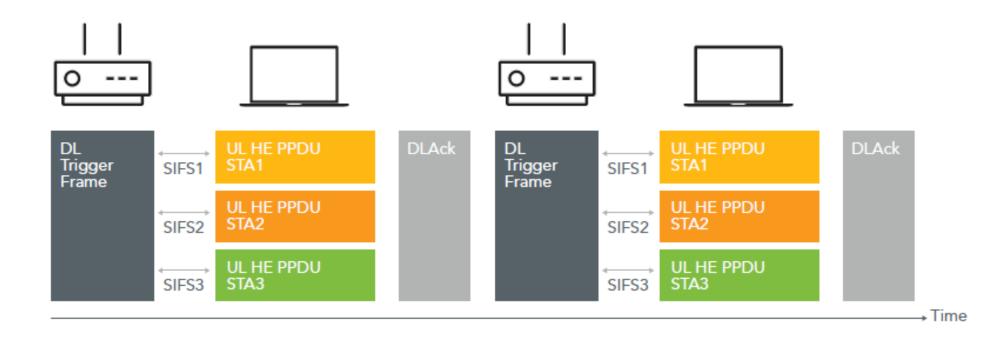

UL-OFDMA Testing

OFDMA vs. OFDM


- Orthogonal Frequency Division Multiplexing (OFDM)
- Orthogonal Frequency Division Multiple Access (OFDMA)
- OFDMA allow multiple users per bandwidth.
 - Each user is allocated a resource unit (RU).

AP as Mini Base Station

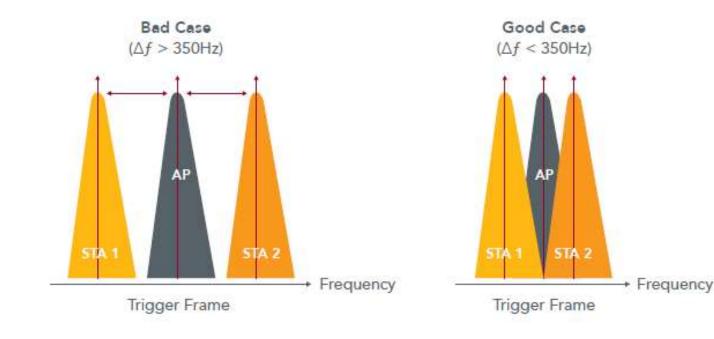
- AP pre-coordinates/ pre-corrects with STAs to minimize interference by transmitting a Trigger frame
 - Power balance among STAs Power
 - System synchronization among STAs
 - Transmit at the same time (< 400ns difference) Timing
 - Transmit at the same carrier frequency (< 350 Hz difference) Frequency



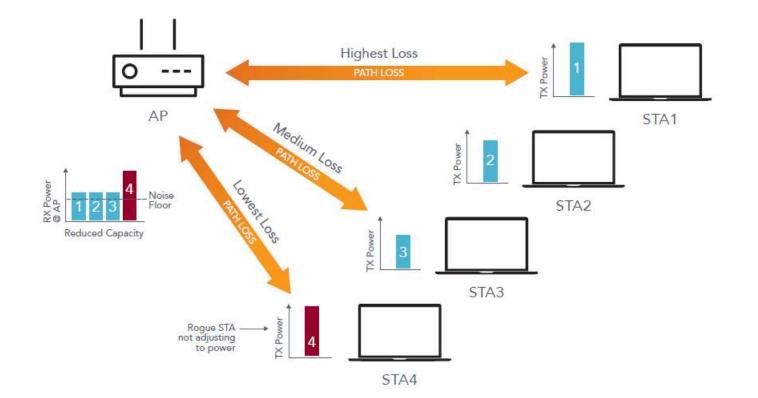
FPOIN

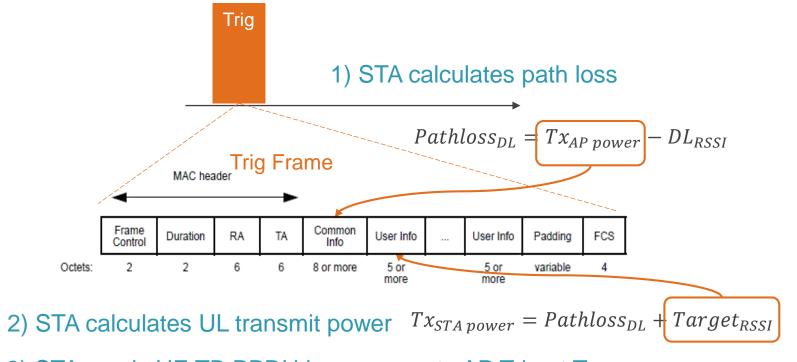
Step 1: Downlink Trigger Frame transmitted by AP Step 2: Uplink HE PPDU transmitted by stations

Timing Synchronization


- Participating STAs start transmission at SIFS (short interframe space) of 16 μs
- ± 400 ns at the end of the trigger frame

Frequency Synchronization


- STAs need to pre-compensate for carrier frequency offset (CFO) error based on the trigger frame received from the AP
- Residual CFO error after compensation must be less than 350 Hz.


Power Pre-correction

- STA must adjust the TX Power
- Ensures that STA Power does not interfere with other participating STAs

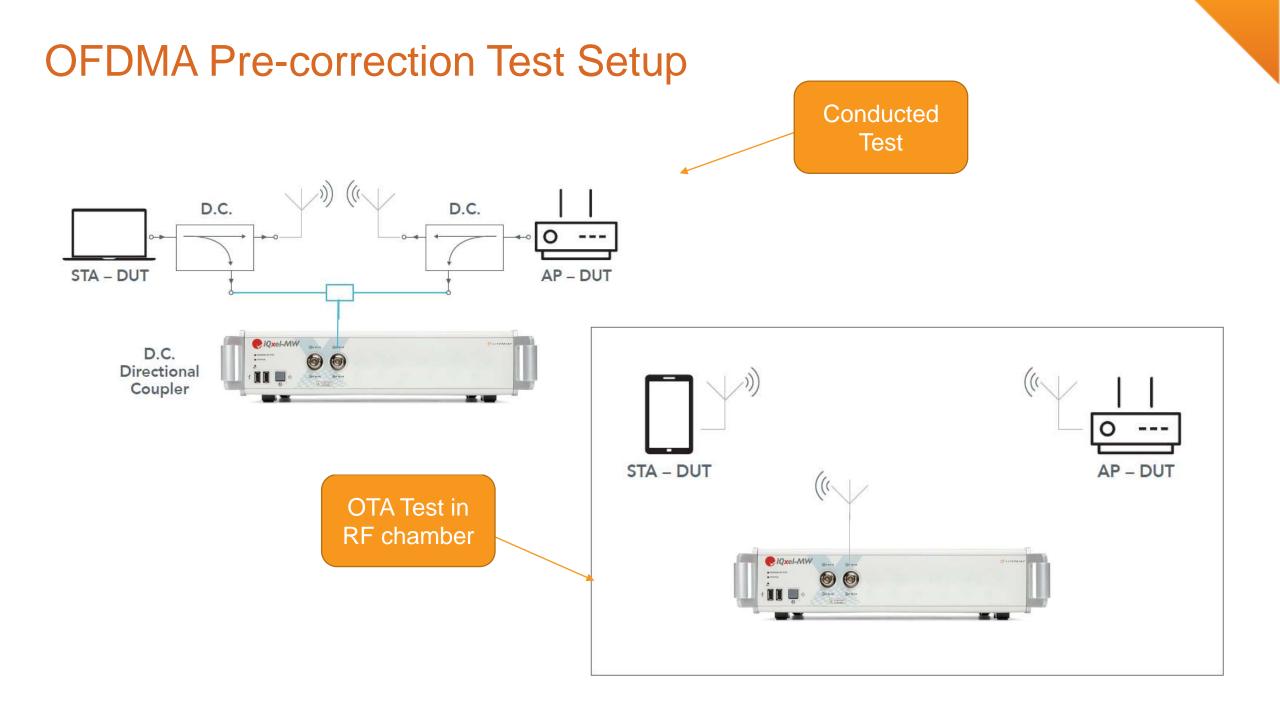
Power Pre-correction

3) STA sends HE TB PPDU in response to AP Trig at Tx STA power

Power Pre-correction Accuracy Requirements

Parameter	Minimum H	Requirement	Comments
Farameter	Class A	Class B	Comments
Absolute transmit power accuracy	±3 dB	±9 dB	Accuracy of achieving a specified transmit power.
RSSI measurement accu- racy	±3 dB	±5 dB	The difference between the RSSI and the received power. Requirements are valid from minimum Rx to max- imum Rx input power.
Relative transmit power accuracy	N/A	±3 dB	Accuracy of achieving a change in transmit power for consecutive HE TB PPDU. The relative transmit power accuracy is applicable only to Class B devices.

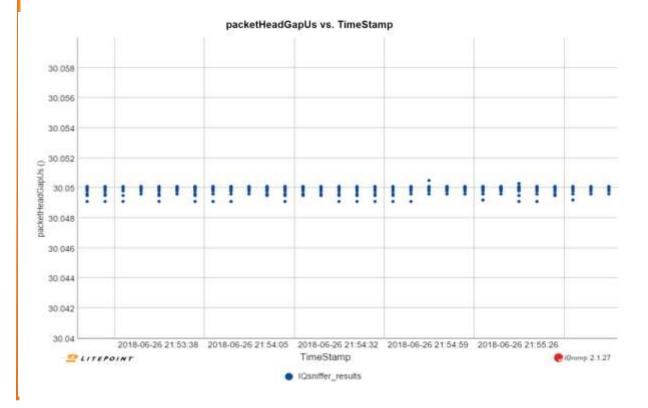
IQsniffer – WiFi PHY Traffic Analysis Simplified


IQsniffer + IQxel-MW integrated solution for PHY and MAC layer analysis

- PHY layer analysis Uncovers timing information and behavior not visible to MAC layer based tools
 - Parametric measurements(EVM, Power, Spectrum, etc.)
 - Timing information
 - PPDU information:

Packet format, such as HE-SU, HE-MU, HE-TRIG, etc. Coding info, such as LDPC, BBC Spatial stream number

- MAC layer information:
 - Packet type, sub-type
 - MAC addresses
 - Full PSDU capture
- Packet information exported in CSV format for easy processing


Example IQsniffer CFO Error

CFO error requirements < 350 Hz Results processed with IQramp

<i>g</i> i	Qrat	np	AMALYS	S TEMPLAT	ES REPORTS						
iete.	- 8	0.00	3 2000	a	di Pivot	₫ Scattor					
	Sakil.	inimited.	Exercit CBV	 Fels Touto 	COPY TO CREALING	Deckimil	0.0 4 17 -	disartan	El Accio Hak	ed toripide	@ Record Cols
					trig	gerBasedF	requencyErro	r vs. TimeSta	mp		
- 0											
-		3			-						
1					-						
1			•				- 1				:
3			•		1.01		25%				
1		-		•				•	:		
1	•		S. 1				10 A				
,		_									
-					1.21						_
									•		
σĿ											
	2016-0		2018-01	2018-0	2018.0	2018-0	2016-0	2018-01	2018-01	2019-0	2018-0

IQsniffer SIFS Timing Measurement

Timing Requirements: 16 µs +/- 400 ns Results processed with IQramp

Wi-Fi 6 Tester for 2.4, 5 and 6 GHz Bands: IQxel-MW 7G

O

First fully integrated tester for Wi-Fi 6 in the 6 GHz band

IQxel-M2W 7G for DVT

IQxel-M8W 7G for Mobile (STA) Manufacturing

IQxel-M16W 7G for Access Point Manufacturing

IQxel-M2W7G

- For DVT
- 2 VSA/VSG and 2 ports active

IQxel-M8W7G

- For STA manufacturing
- Multi-DUT
- Configurations available:
 - 2x4: 2 VSA/VSG and 4 ports active
 - 2x8: 2 VSA/VSG and 8 ports active

IQxel-M16W7G

- For AP manufacturing
- Configurations available:
 - 4x4: 4 VSA/VSG and 4 ports active
 - 4x8: 4 VSA/VSG and 8 ports active
 - 4x16: 4 VSA/VSG and 16 ports active

LITEPOINT

• Designed for True MIMO testing up to 4x4 on a single unit and up to 8x8 with extension.

IQxel-MW 7G Product Highlights

The *IQxeI-MW 7G* is LitePoint's test solution for advanced Wi-Fi 6 testing on 2.4GHz, 5 GHz and 6 GHz frequency bands

- Frequency range from 400 MHz to 7300 MHz
- Addresses the requirements of the IEEE 802.11ax (Wi-Fi 6) and 802.11ac (Wi-Fi 5) specifications and tests all IEEE 802.11 legacy specifications
- Native support for per-port 160 MH, 80+80 MHz and future 160+160 MHz signal combinations
- Exceptional residual EVM performance for 1024 QAM
- Single-user OFDMA, Trigger based Test multi-user OFDMA, Uplink and Downlink testing with easy-toedit RU allocations
- Wi-Fi 6 Carrier Frequency Offset (CFO), power and timing control verification
- Tests all Bluetooth device standards (1.x, 2.x, 3.0, 4.x, 5) and the newly released BT 5.1
- Test support for DECT (ETSI EN 300 176-1), ZigBee, Z-Wave and WiSUN and LPWAN technologies LoRa and Sigfox

Higher Tester Performance for Linearity and Signal to Noise to make sure the EVM accuracy, so that insure the CPK and pass rate in MFG

-19 dB	-27 dB	-32 dB	-35 dB	-38 dB
16 QAM	64 QAM	256 QAM	1024 QAM	4096QAM
* * * *	· · · · · · · · · · ·			

IQxel-MW 7G EVM accuracy < -48dB in loopback measurement with LTF channel estimation, and reach up to < -51dB with full packet channel estimation.

O n

Thank you

