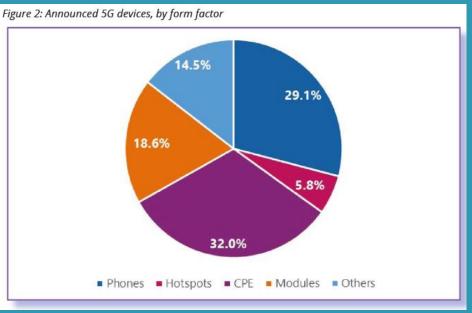
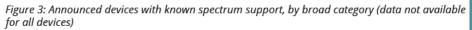
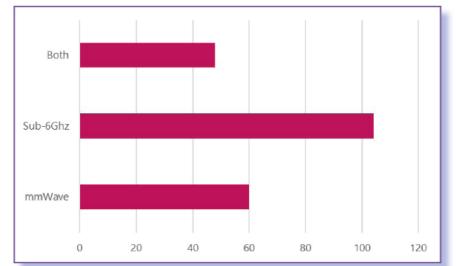


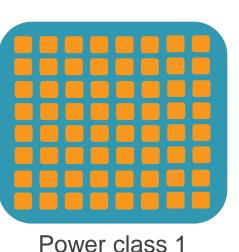
A Teradyne Company


Transitioning from DVT to manufacturing for 5G FR2 mmWave devices


Market Update: 5G Device Ecosystem


By Oct. 2019, GSA had identified 15 announced form factors 71 vendors announced 172 devices (50 phones, 10 hotspots, 55 CPE devices, 32 modules, etc.)

Source: GSA 5G Devices Report


Information Shared Under NDA – Do Not Distribute

UE Power Class - Antenna and Output Power

• Different UE power classes are characterized by different UE antenna design assumptions and have different UE maximum output power and reference sensitivity requirements.

UE Power class	UE type
1	Fixed wireless access (FWA) UE
2	Vehicular UE
3	Handheld UE
4	High power non-handheld UE

Power class 3

	Operating band	Min Peak EIRP (dBm)	Max TRP (dBm)	Max EIRP (dBm)
	n257	40	35	55
Power	n258	40	35	55
class 1	n260	38	38 35	
	n261	40	IBm) (dBm) (dBm) 35 55 35 55 35 55 35 55 35 55 35 55 35 55 23 43 23 43 4 23 43 4 23 43 5 23 43 4 23 43 4 23 43 4 23 43 23 43 43 23 43 43 23 43 43 23 43 43 23 43 43 23 43 43 23 43 43 23 43 43 23 43 43 23 43 43 23 43 43 23 43 43 23 43 43 23 43 43	55
_	n257	29	23	43
Power class 2	n258	29	23	43
	n261	29 23	43	
	n257	22.4	23	43
Power class 3	n258	22.4	23	43
	n260	20.6	23	43
	n261	22.4	23	43
	n257	34	23	43
Power	n258	34	23	43
class 4	n260	31	23	43
	n261	34	23	43

3GPP TS38.101-2

 \sim

UE Power Class - Reference Sensitivity

3GPP TS38.101-2

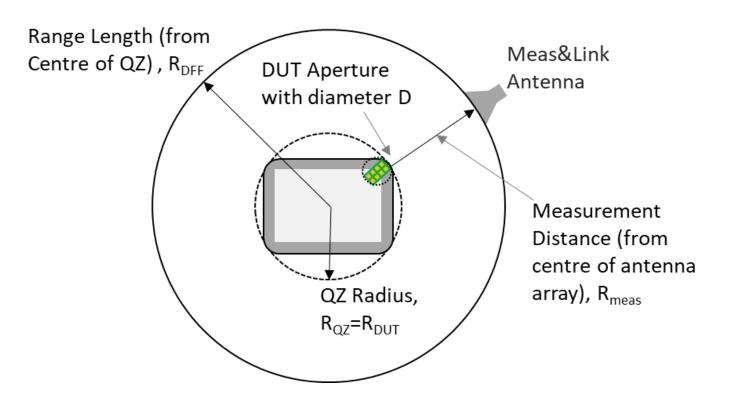
	Operating		REFSENS (dBm) / Channel bandwidth						
	band	50 MHz	100 MHz	200 MHz	400 MHz				
	n257	-97.5	-94.5	-91.5	-88.5				
Power class 1	n258	-97.5	-94.5	-91.5	-88.5				
	n260	-94.5	- 91.5	-88.5	* -85.5				
	n261	-97.5	-94.5	-91.5	-88.5				
	NOTE 1: The	transmitter shall be s	et to P _{UMAX} as defined	l in subclause 6.2.4					
	0			/ O l					
	Operating bar			/ Channel bandwidth					
		50 MHz	100 MHz	200 MHz	400 MHz				
	n257	-92.0	-89.0	-86.0	-83.0				
Power class 2	n258	-92.0	-89.0	-86.0	-83.0				
	n261	-92.0	-89.0	-86.0	-83.0				
	NOTE 1: The	transmitter shall be se	in subclause 6.2.4						
	On anatin a la sa	I			L				
	Operating bar			/ Channel bandwidt					
		50 MHz	100 MHz	200 MHz	400 MHz				
	n257	-88.3	-85.3	-82.3	-79.3				
Power class 3	n258	-88.3	-85.3	-82.3	-79.3				
FUWEI UIdss 3	n260	-85.7	-82.7	-79.7	-76.7				
	n261	-88.3	-85.3	-82.3	-79.3				


n261 -88.3 -85.3 -82.3 NOTE 1: The transmitter shall be set to PUMAX as defined in subclause 6.2.4

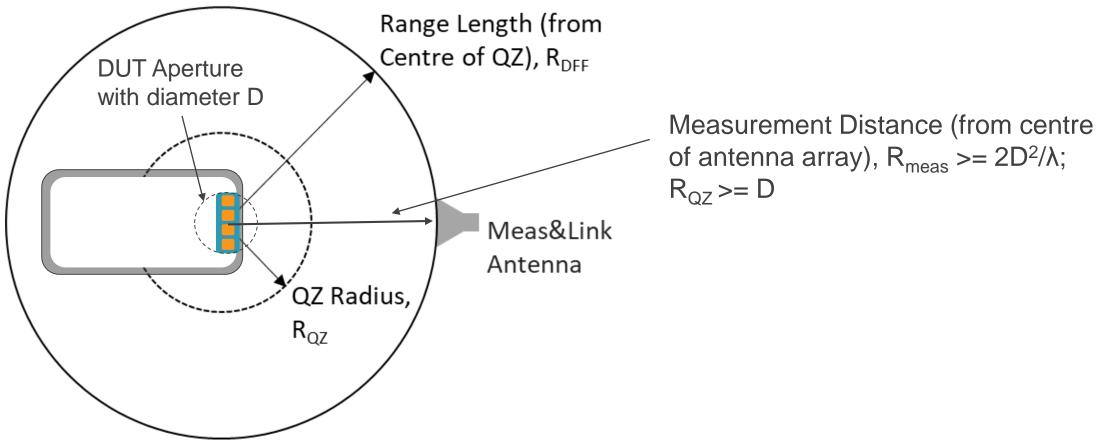
Power	class 4
-------	---------

Operating band		REFSENS (dBm) / Cha	nnel bandwidth				
	50 MHz	100 MHz	100 MHz 200 MHz 400				
n257	-97.0	-94.0	-91.0	-88.0			
n258	-97.0	-91.0	-88.0				
n260	-95.0	-92.0	-89.0	-86.0			
n261	50 MHz 100 MHz 257 -97.0 -94.0 258 -97.0 -94.0 260 -95.0 -92.0		-91.0 -88.0				
NOTE 1: The trans	mitter shall be set t	o P _{UMAX} as defined in sul	bclause 6.2.4				

When we talk about 5G FR2 mmWave, we must discuss OTA

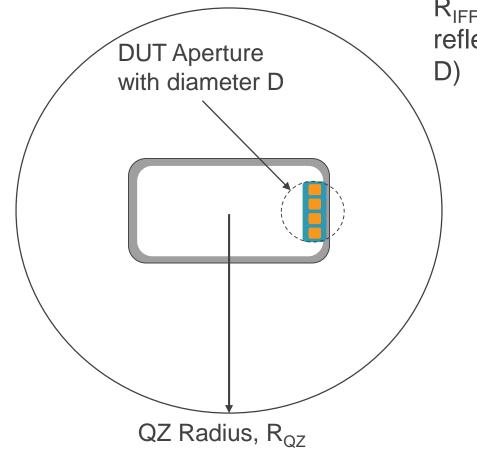

Recap 3GPP TR 38.810

- To define the over the air (OTA) testing methodology for UE RF, UE RRM, and UE demodulation requirements for New Radio, the associated measurement uncertainty budget(s), and the related test tolerances.
- The test methods defined are introduced for handheld UEs and applicable to FR2 UE Power Class 3
- Permitted test methods for UE RF testing
 - Direct far field (DFF)
 - Indirect far field (IFF), aka Compact Antenna Test Range (CATR)
 - Near field to far field transform (NFTF)


DFF with Black-box Testing Approach

- The centre of DUT is placed in the centre of the test zone
- The minimum range length for NR FR2 DFF systems where the sphere enclosing the DUT matches the QZ and the DUT antenna with radiating aperture diameter D located in the corner of the DUT Minimum $R_{DFF} = R_{QZ} - D/2 + R_{meas} = R_{QZ} - D/2 + 2D^2/\lambda$

DFF with White-box Testing Approach


• The centre of DUT aperture is placed in the centre of the test zone

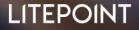
IFF with Black-box Testing Approach

• The centre of DUT is placed in the centre of the test zone

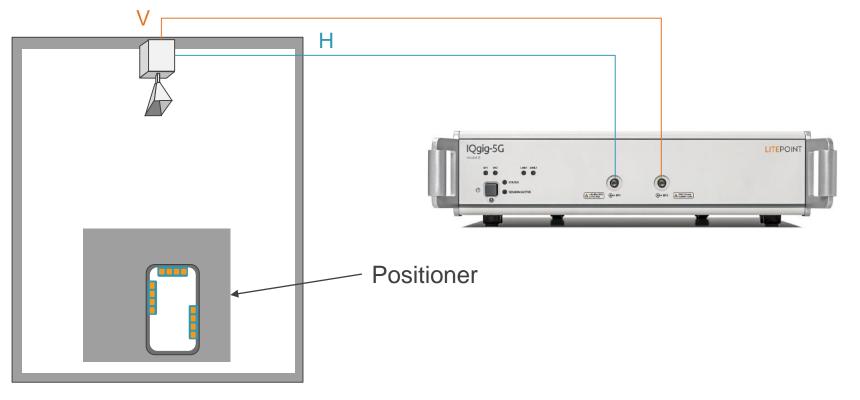
 R_{IFF} = focal length (distance between the feed and reflector for a CATR) = 3.5 x size of reflector = 3.5 x (2 x

Test Method Applicability

- Test method depends on DUT aperture and preferred testing approach
- Different scenarios for different power class UE and different test applications

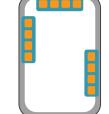

 Power class 1 UE may adopt near field test method, stay tuned for LitePoint solution

DUT Antenna Configuration	Description
1	Maximum one antenna panel with D ≤ 5 cm active at any one time
2	More than one antenna panel D ≤ 5 cm without phase coherence between panels active at any one time
3	Any phase coherent antenna panel of any size (e.g. sparse array)

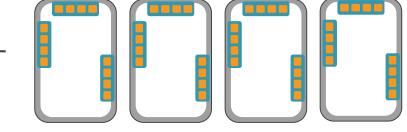

DUT Antenna Configuration	Direct Far Field (DFF)	Indirect Far Field (IFF)	Near Field to far field transform (NFTF)					
1	Yes	Yes	Yes					
2	Yes	Yes	Yes					
3	No	Yes	No					
NOTE: A positive indication means that applicability exists for at least one RF test cases for the given DUT Antenna Configuration								

Let's look at OTA setup

Single-DUT DVT Configuration



DFF or IFF chamber



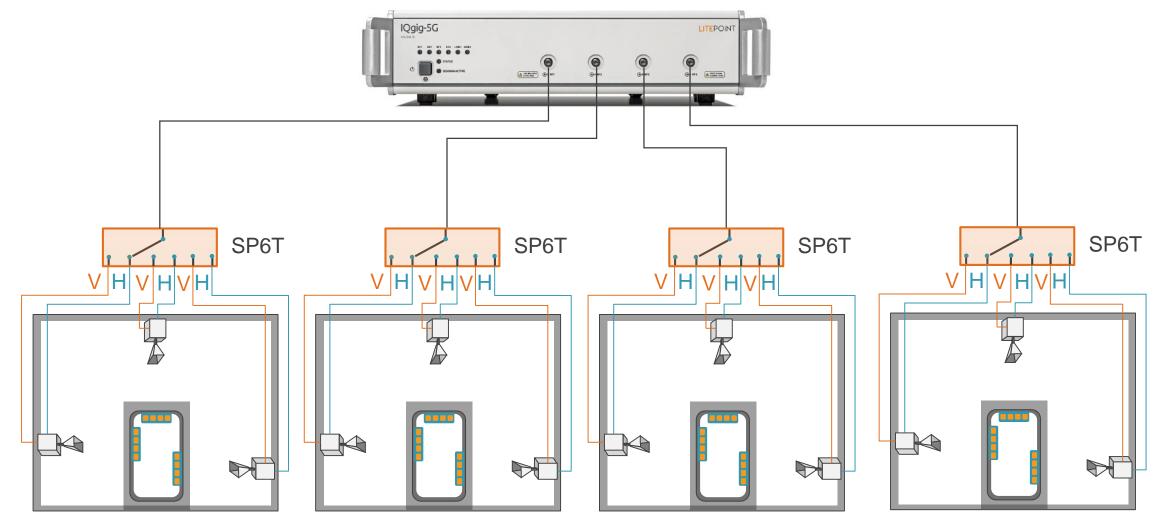
Transitioning from DVT to Manufacturing

Multi-DUT

Chamber (DFF or IFF) with device positioner

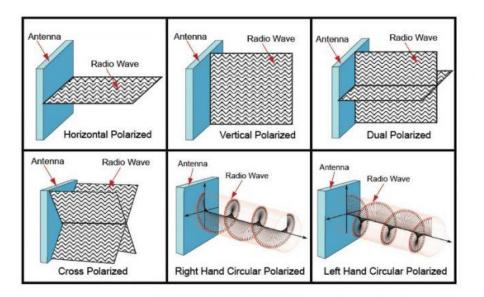
Chamber (DFF) without device positioner (or simple device positioner)

DVT



Seamless and robust transition from the lab to the factory floor

Manufacturing


Multi-DUT Manufacturing Configuration: Expandability

LITEPOINT

Options of Measurement Antenna

- Dual polarization horn antenna
- 2* Single polarization horn antennas
- Single polarization horn antenna at 45 degrees
- Circular polarization antenna

LitePoint 23-45 GHz Dual-Pol Antenna

- Quad-Ridged Flared Horn (QRFH) design to achieve broadband and dual-pol capabilities.
- 2.4 mm coax interface (< 50 GHz)
- Two models (low & high gain) in fab Scalable design for different beamwidth/ gain/ FF requirements.

• Performance:

	Band (GHz)	Plane	Gain (dBi)	BeamW (°)	Cross-Pol Iso.
	23	Н	6.5	62	>20
Low Gain	23	Е	6.5	62	
(Aperture 0.3" SQ)	45	Н	11.5	44	
	40	Е	11.5	32	
	23	Н	10.5	46	>20
High Gain (Aperture 0.745" SQ)	23	Е	10.5	32	
	45	Н	14.5	24	
	40	Е	14.5	22	

IQfact5G Automation Software for Manufacturing

 LitePoint IQfact5G enables superior Multi-DUT test efficiency (over 98% when doing 2-DUT)

Edit Tools Window Help												
🕼 🕞 🏃 🗊 🎼 🕇 🦊 X 🧧 🔯 Execution Mode: Normal		O Number of Runs: 1										
:\Tree and Log\5G_mmWave_Ex.txt	Input	Input Parameters				Return Values						
NR5G_mW	No fi	lter 👻			Change All	No f	ilter 🔻					Change
1.GLOBAL_SETTINGS				-	11.5				-			
2.INSERT_DUT		Name	Value	Туре	Unit		Name	Value	Туре	Unit	Lower Limit	Upper Limit
3.INITIALIZE_DUT	1	BAND	261	Integer		1	SFL_INDEX_MAN_1		Integer			
4.CONNECT_IQ_TESTER		BANDIN/DTI I	100									
5.LOAD_PATH_LOSS_TABLE	2	BANDWIDTH	100	Integer	MHz	2	SFL_INDEX_MAN_2		Integer			
6.TX_VER_BeamID13_B261_CH2077099_66RB@0_QPSK 7.TX_VER_BeamID23_B261_CH2077099_66RB@0_64QAM	3	BEAM ID	13	Integer		3	SFL INDEX MIN 1		Integer			
8.TX VER BeamID23 B261 CH2077099 66RB@0 QPSK									-			
9.RX_VER_BeamID13_B261_CH2077099	4	CHANNEL	2077099	Integer		4	SFL_INDEX_MIN_2		Integer			
10.HANDOVER_BeamID141_B261_CH2077099_66RB@0_QPSK			0									
11.TX_VER_BeamID141_B261_CH2077099_66RB@0_QPSK	5	DMRS_ANTENNA_PORT	U	Integer		2	ACLR_WORST_MARGIN		Double			
12.TX_VER_BeamID141_B261_CH2077099_66RB@0_64QAM	6	MODULATION_TYPE	0	Integer		6	ACLR_WORST_OFFSET		Double			
13.TX_VER_BeamID141_B261_CH2077099_66RB@0_QPSK			-			-						
14.RX VER BeamID141 B261 CH2077099	7	NUM_RB	66	Integer		7	ACLR_WORST_RELATIVE_1		Double			
15.HANDOVER_BeamID141_B260_CH2253355_66RB@0_QPSK												
16.TX_VER _BeamID13_B260_CH2253355_66RB@0_QPSK	8	PERFORM_FREQUENCY_ADJUSTMEN	11	Integer		8	ACLR_WORST_RELATIVE_2		Double			
17.TX_VER_BeamID23_B260_CH2253355_66RB@0_64QAM	9	PORT_EXTESION_SECTION_ID	1	Integer		Q	ACLR_WORST_TX_POWER_1		Double	dBm		
18.TX_VER _BeamID23_B260_CH2253355_66RB@0_QPSK		TORI_EXTESION_SECTION_ID	·	integer		-	Actionation		Double	abin		
19.RX_VER _BeamID13_B260_CH2253355	10	START_RB	0	Integer		10	ACLR_WORST_TX_POWER_2		Double	dBm		
20.HANDOVER _BeamID141_B260_CH2253355_66RB@0_QPSK												
21.TX_VER _BeamID153_B260_CH2253355_66RB@0_QPSK	11	TX_POWER	230	Integer		11	EVM_ALL_PERCENT		Double	%		
22.TX_VER _BeamID153_B260_CH2253355_66RB@0_64QAM	12	PORT EXTESION SWPORT	0	Double		12	FREQ ERROR AVG HZ		Double	Hz		
23.TX_VER _BeamID153_B260_CH2253355_66RB@0_QPSK	12	PORT_EXTESION_SWPORT	U	Double		12	FREQ_ERROR_AVG_HZ		Double	112		
24.RX_VER _BeamID153_B260_CH2253355	13	VSA CAPTURE TIME	2	Double	ms	13	FREQ ERROR AVG PPM		Double	ppm		
25.HANDOVER _BeamID141_B261_CH2077099_66RB@0_QPSK												
26.TX_VER _BeamID13_B261_CH2077099_66RB@0_QPSK	14	MEASUREMENTS	Q,P,S,A,O	String		14	IBE_CARRIER_LEAKAGE		Double	dBc		
27.TX_VER _BeamID23_B261_CH2077099_66RB@0_64QAM			v									
28.TX_VER_BeamID23_B261_CH2077099_66RB@0_QPSK	15	MIMO_LAYER	V	String		15	IBE_CARRIER_LEAKAGE_MARGIN		Double	dB		
29.RX_VER _BeamID13_B261_CH2077099	16	VSA_PORT		String		16	IBE_GENERAL_WORST		Double	dB		
30.HANDOVER_BeamID141_B261_CH2077099_66RB@0_QPSK		la grow		sting			102_021121012_1101131		Double			
31.TX_VER_BeamID141_B261_CH2077099_66RB@0_QPSK						17	IBE_GENERAL_WORST_MARGIN		Double	dB		
32.TX_VER_BeamID141_B261_CH2077099_66RB@0_64QAM 33.TX_VER_BeamID141_B261_CH2077099_66RB@0_QPSK												
34.RX VER BeamID141_0201_CH2077099						18	IBE_GENERAL_WORST_MARGIN_RB		Double	Index		
35.HANDOVER_BeamID141_B260_CH2077099 35.HANDOVER_BeamID141_B260_CH2253355_66RB@0_QPSK						19	IBE IMAGE WORST		Double	dB		
36.TX_VER_BeamID13_B260_CH2253355_66RB@0_QPSK									2 Outre			
37.TX_VER_BeamID23_B260_CH2253355_66RB@0_64QAM						20	IBE_IMAGE_WORST_MARGIN		Double	dB		
38.TX_VER_BeamID23_B260_CH2253355_66RB@0_QPSK												
39.RX VER BeamID13 B260 CH2253355						21	IBE_IMAGE_WORST_MARGIN_RB		Double	Index		
40.HANDOVER BeamID141 B260 CH2253355 66RB@0 QPSK						22	IQ Offset		Double	dBc		
41.TX_VER_BeamID153_B260_CH2253355_66RB@0_QPSK						22	ic_onset		Double	ubc		
42.TX_VER_BeamID153_B260_CH2253355_66RB@0_64QAM						23	OBW		Double	MHz		
43.TX_VER_BeamID153_B260_CH2253355_66RB@0_QPSK												
44.RX_VER_BeamID153_B260_CH2253355						24	PORT_EXTESION_SWPORT		Double			
45.REMOVE_DUT						ar	DOWER AVERAGE			dBm		
46.DISCONNECT_IQ_TESTER						25	POWER_AVERAGE		Double	aBm		

ITFPOINT

LitePoint 5G mmWave Product

5G Product Family

IQxstream-5G

- Frequency Range 400 6000 MHz
- 200 MHz Bandwidth
- Sub 6GHz (FR1) 5G & NR-U
- Supports existing 2G/3G/4G
- Supports WiFi 802.11n/ac/ax

IQgig-IF

- Frequency Range 5 19 GHz
- 1.7 GHz Bandwidth
- Module IF interface testing
- Supports 3GPP NR specifications
- Supports WiGig 802.11ad/ay

IQgig-5G

- Frequency Range 23 45 GHz
- 1.7 GHz Bandwidth
- Fully-integrated 3GPP NR 5G
- Supports 100MHz, 400 MHz & 8x100 MHz CA test cases

Comprehensive 5G Test Coverage for FR1 and FR2 Devices

LITEPOINT

IQgig-5G for 5G mmWave

First fully-integrated 5G mmWave test system

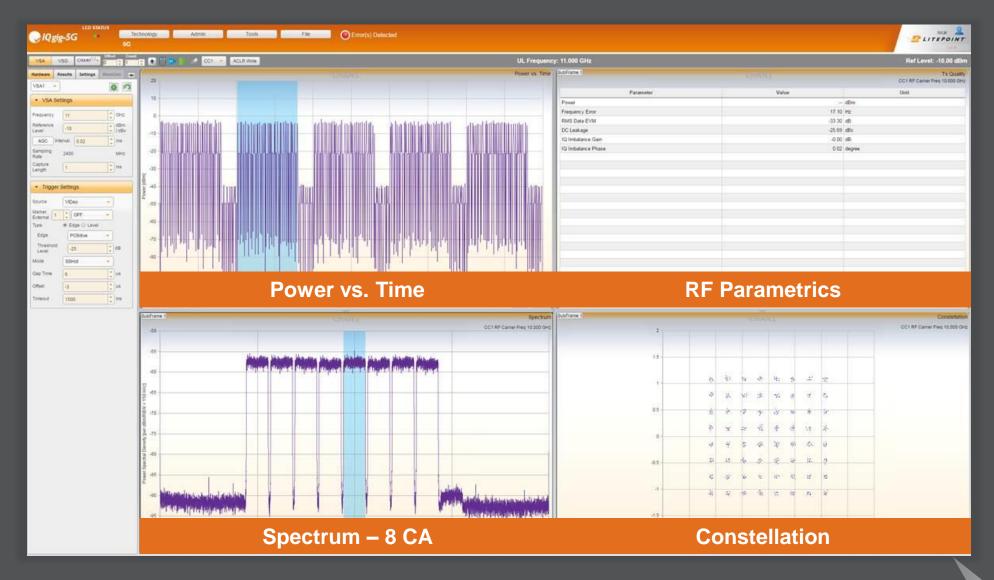
- Simplest 5G testing with single unit covering all 3GPP mmWave bands: 23 45 GHz
- All signal generation, analysis, and RF front-end routing H/W are self-contained
- Single intuitive S/W interface

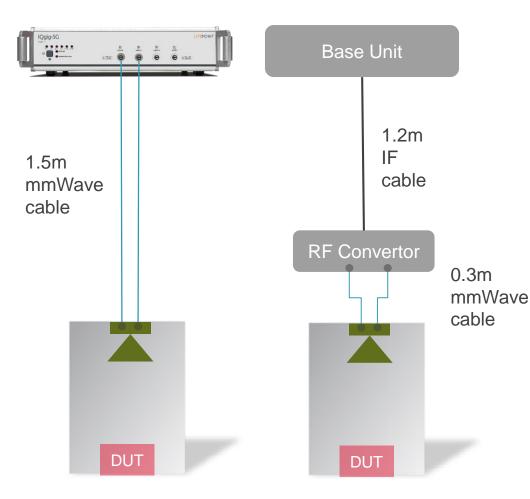
5G measurements in minutes

- Simple connections just power up and go
- Four bi-directional 2.4 mm connectors enable dual polar testing in multi-DUT
- Source and Measure capabilities fully calibrated to the instrument front panel

No Compromise 5G performance

- Supports the 3GPP NR standards evolution
- 1.7 GHz of single-shot bandwidth.
- EVM performance better than -42 dB (0.8%)





Intuitive Graphical User Interface

5G Waveform Generation and Analysis

Architecture Comparison

It's true RF converter architecture has less loss due to shorter mmWave cable. However does it matter that much? NO!

Frequency	40	GHz		
Lambda	7.5000	mm		
Cable insertion loss	-2.6	dB/m	40	GHz
Cable insertion loss	-2.1	dB/m	28	GHz
Cable insertion loss	-1.65	dB/m	18	GHz
Link budget	LitePoint	Base Unit + RF Converter		
Cable length	1.5	0.3	m	
Cable loss	-3.9	-0.78	dB	
Horn antenna gain	15	15	dBi	
OTA distance	30	30	cm	
OTA loss	-54.03	-54.03	dB	
				_
Composite loss	-42.93	-39.81	dB	

Horn antenna gain 15 dBi, far field distance 30 cm

LITEPOINT

Architecture Comparison

- OTA loss contributes over 90% of composite loss, cable loss is minor
- With RF converter architecture, when number of DUTs increase, number of RF converters increase, number of module in base unit increase → Cost increase and poor expandability
- Fully integrated architecture is simple, provide good multi-DUT expandability and competitive cost of test

Summary

- UE power class
- Recap OTA test methods
- OTA setup for DVT and manufacturing
- Expertise from DVT to Manufacturing
 - Total solution provider
 - Test equipment + mmWave chamber (partnership with mmWave chamber vendor)
 - Multi-DUT expandability
 - IQfact5G automation software (APT built-in)
- IQgig-5G fully-integrated architecture vs Base Unit+RF Converter architecture

