

A Teradyne Company

Solving the Wi-Fi 6E Performance Challenges in DVT and Manufacturing

Agenda

• Wi-Fi Evolution: Wi-Fi 6, 6E and 7:

- Worldwide spectrum adoption
- Market updates
- Wi-Fi 6E chipsets roundup
- Wi-Fi 7

• Wi-Fi 6E Channels and Operating Rules

- IEEE channels allocation
- Classes of power

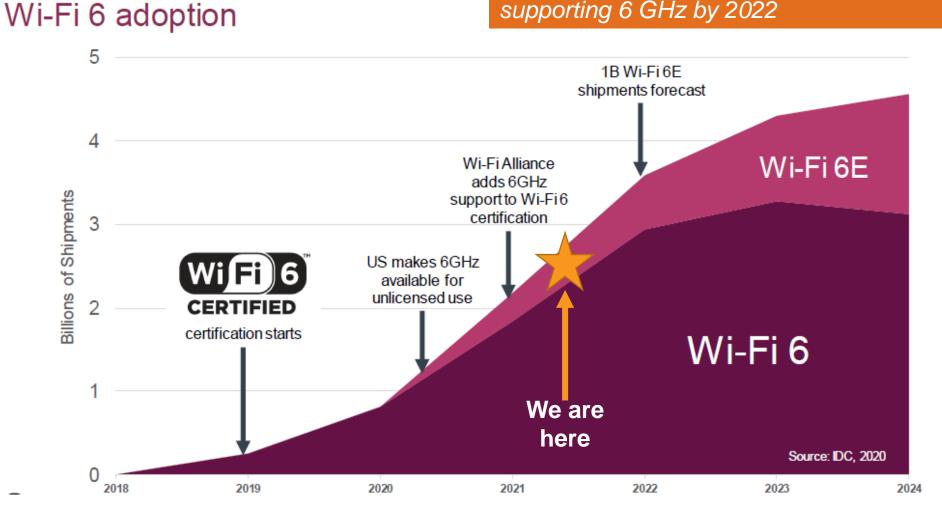
• Wi-Fi 6E Top Performance Challenges

Identifying performance bottlenecks

LITEPOINT


- Increased frequency range
- Coexistence
- High data rates
- Wider Channels
- Multi-User OFDMA
- Wi-Fi 6E Test Strategy

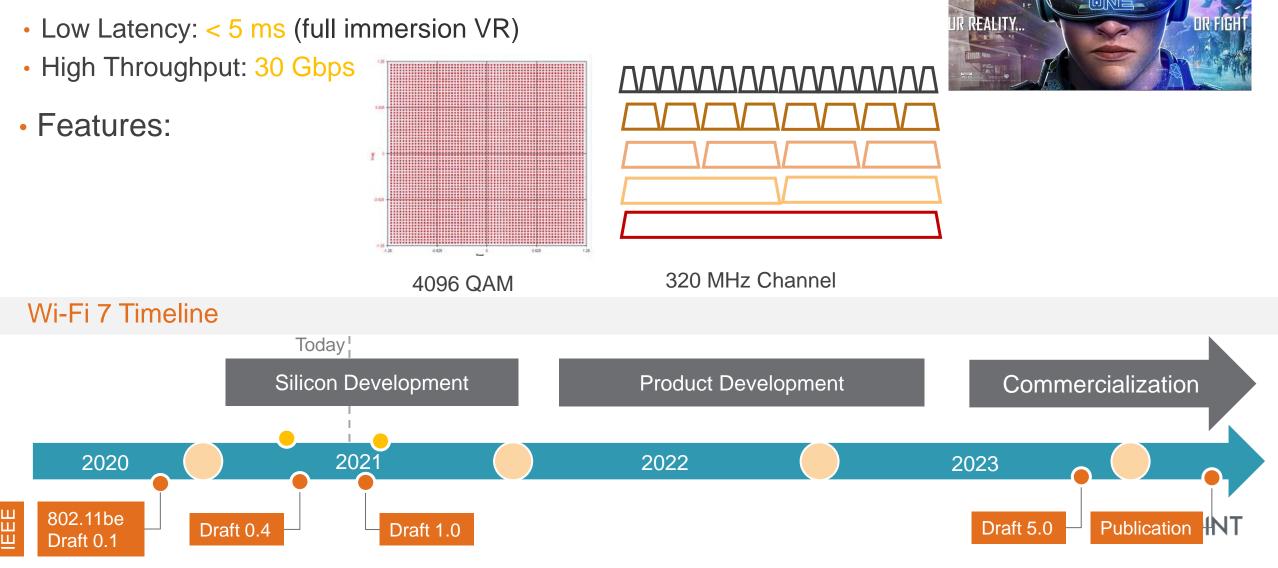
Wi-Fi Evolution: Wi-Fi 6, 6E and 7

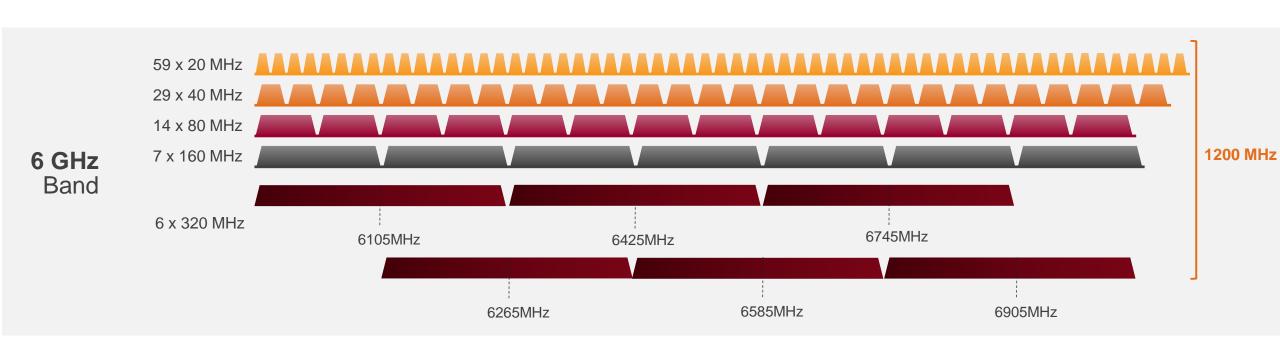

6 GHz Band Regulatory Approval

LITEPOINT

Wi-Fi 6E Market Update

nearly 20 percent of all Wi-Fi 6 device shipments supporting 6 GHz by 2022




Source: Wi-Fi Alliance

802.11be (Wi-Fi 7) EHT Extreme High Throughput

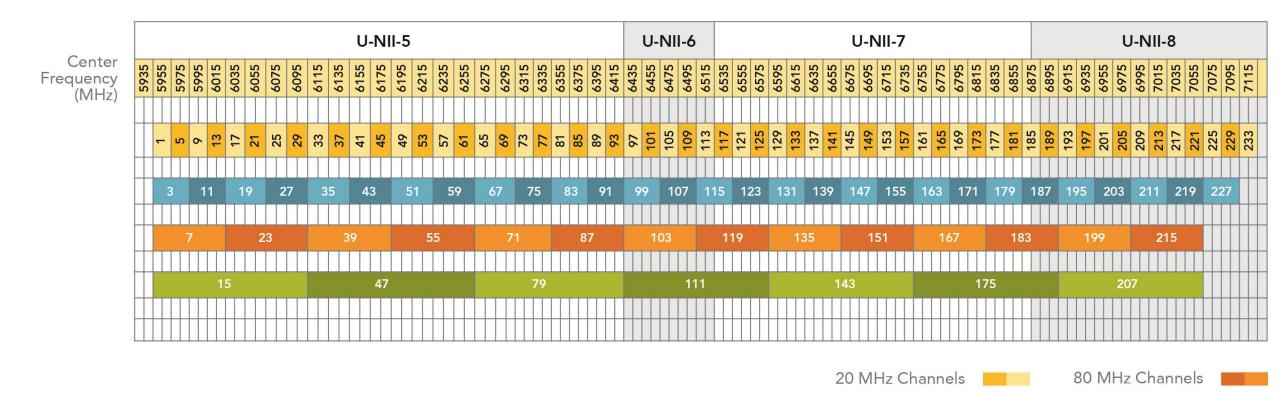
Target Performance for AR and VR

320 MHz channels in the 6 GHz band

3 non-overlapping 320 MHz channels 6 overlapping 320 MHz channels

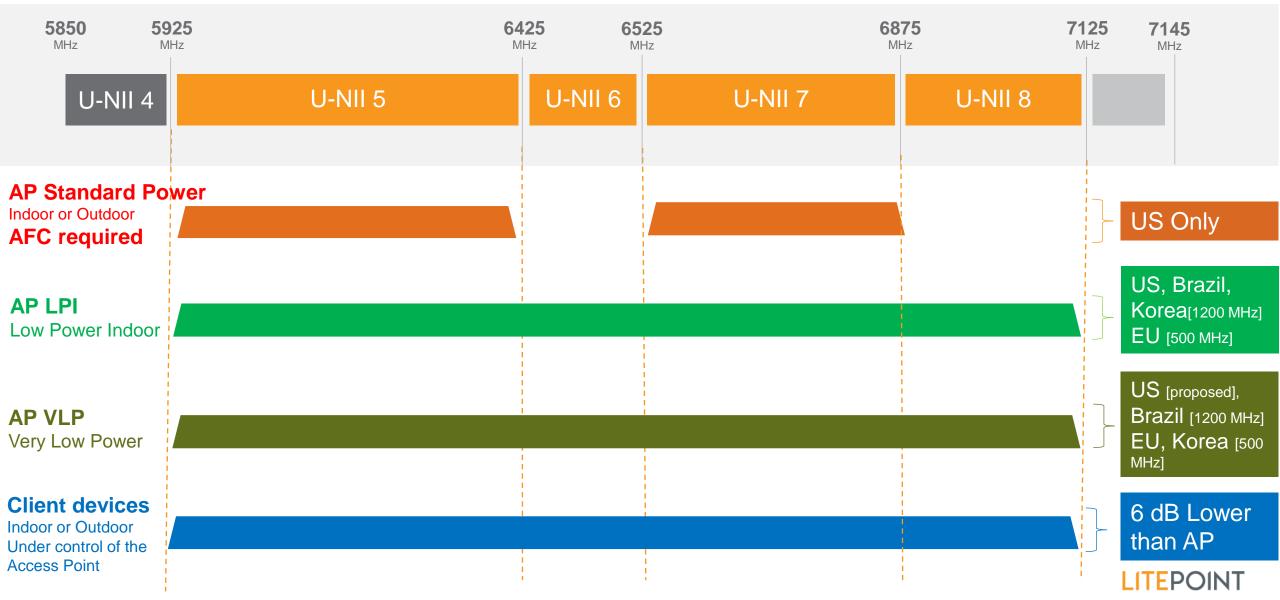
Key Changes in Wi-Fi 7

	802.11ac Wi-Fi 5	802.11ax Wi-Fi 6	802.11be Wi-Fi 7
Operating Bands	5GHz	2.4 & 5GHz 6GHz	2.4 & 5GHz 6GHz
Technology	OFDM	UL/DL OFDMA	UL/DL OFDMA
MU-MIMO	DL MU-MIMO	DL / UL MU-MIMO	DL / UL MU-MIMO
Modulation	256QAM	1024QAM	4096QAM
User Streams	Up to 8 use	er streams	Up to 16 user streams
Bandwidth	20, 40, 80, 80+8	0 and 160MHz	20, 40, 80, 80+80, 160, 160+160, 320 MHz
Multi-Link Operation (MLO)			Yes
Enhanced OFDMA			Preamble puncturing, Multi-RU


Wi-Fi 6E Bands, Channels and Operation

n

Wi-Fi 6E Channels



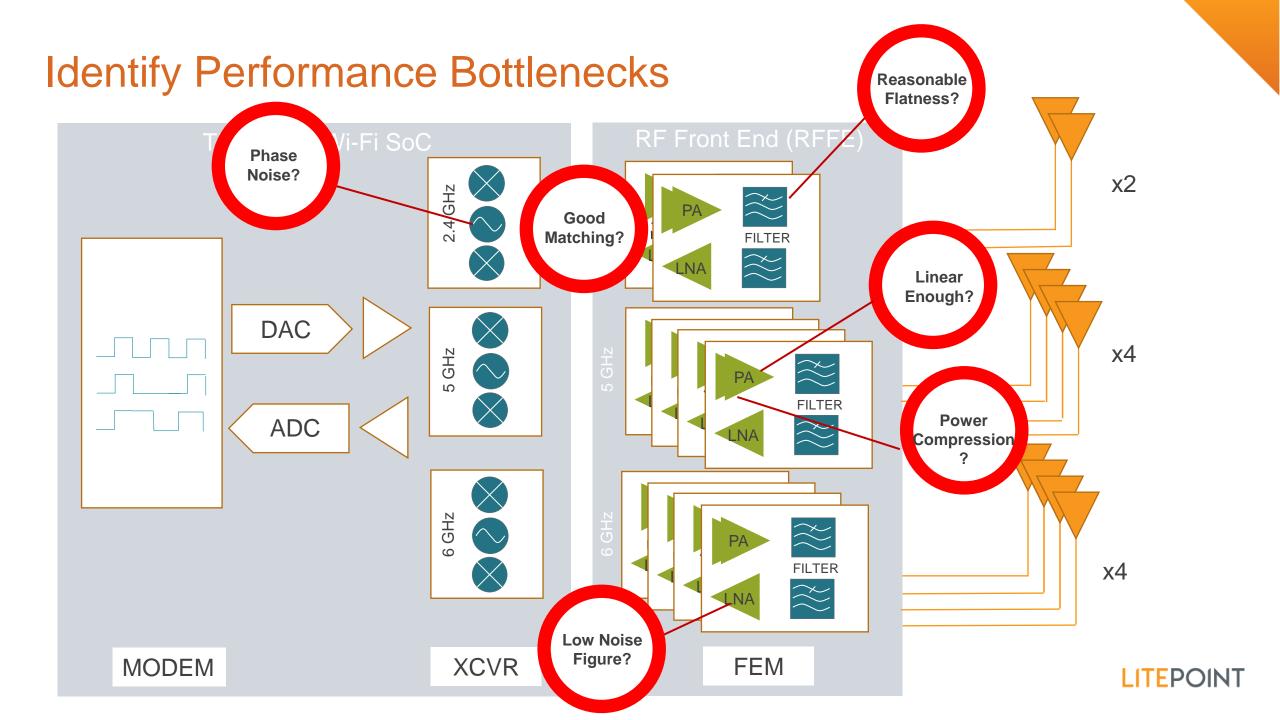
40 MHz Channels

LITEPOINT

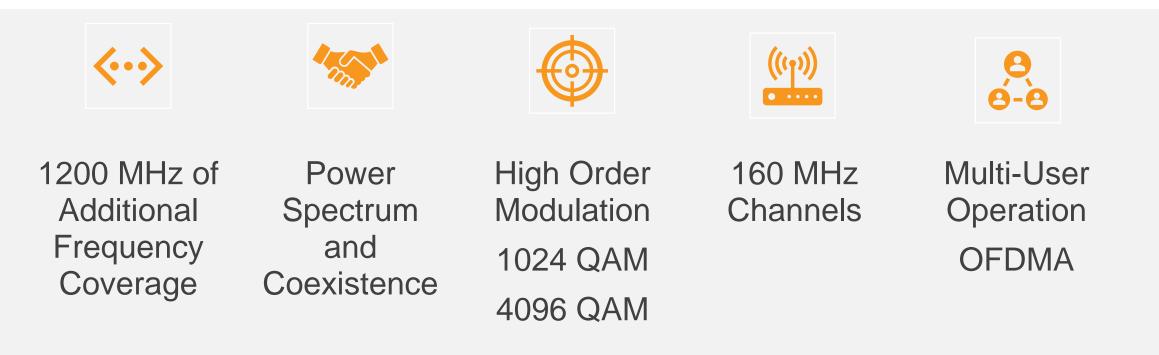
160 MHz Channels

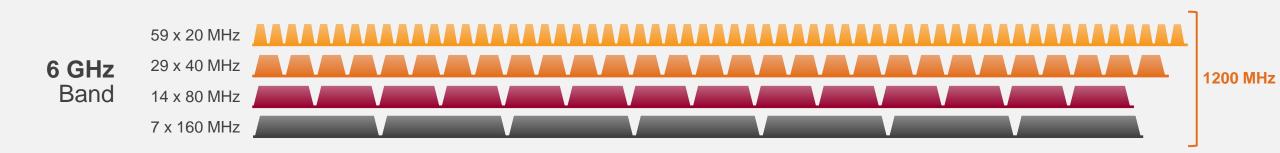
6 GHz band and Classes of Power

AP Power Classes Summary


	MAX AP EIRP	MAX AP PSD
Standard	36 dBm (US)	23 dBm/MHz (US)
Power		
Low Power	30 dBm (US)	5 dBm/MHz (US)
Indoor	23 dBm (EU)	10 dBm/MHz (EU)
Very Low	14 dBm (US)	-8 dBm/MHz (US)
Power	14 dBm (EU)	1 dBm/MHz (EU)

- Standard Power (US only): Operation not allowed on Mobile bands (U-NII 6 & 8). Operation requires Automated Frequency Coordination (AFC).
- The AFC system provides a list of frequencies where the AP can operate safely without interfering with incumbent fixed microwave receivers
- Low Power Indoor : Operation allowed Indoors only. No weather resistant enclosure, cannot operate solely on battery power and integrated antennas
- Very Low Power: Operation allowed indoor/outdoor but low power restriction


Wi-Fi 6E Performance Challenges


5 Wi-Fi 6E Key Performance Challenges

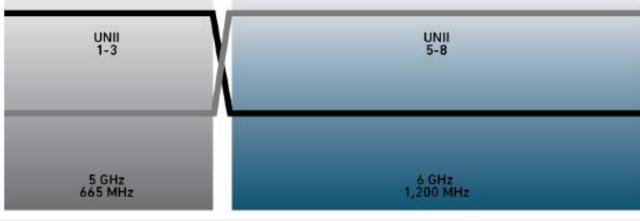
Challenge #1: Increased Frequency Range Coverage

1200 MHz of additional spectrum (twice the amount of spectrum of 2.4 and 5 GHz bands combined)



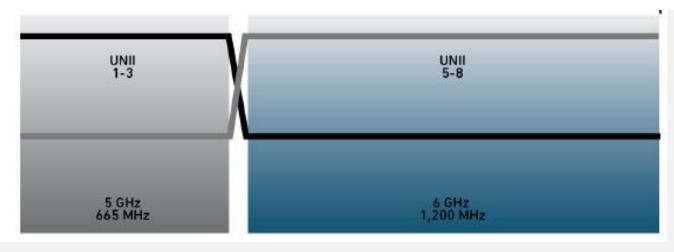
- RFFE must cover wide bandwidth with high linearity
- PA must be efficient at high frequencies
- Gain roll off faster at high frequencies
- PA linearity determines RF range and signal coverage

Increase Test Coverage to include 6 GHz band



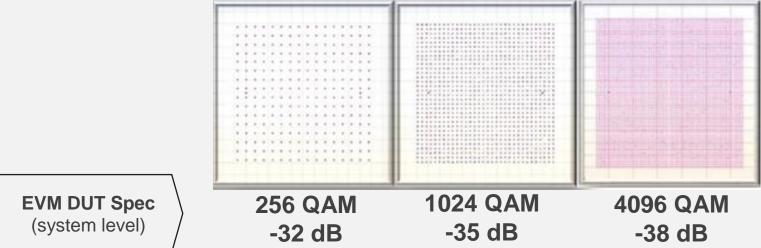
- Manufacturing Test Coverage must include channels in the 6 GHz band.
- Verify per-DUT performance in low, mid and high 6 GHz band at maximum power to detect non-linearities

Challenge #2: Power Spectrum and Coexistence


Only 75 MHz guard band between 5 GHz and 6 GHz band and only 25 MHz guard band between UNII-4 (Vehicle DSRC) and UNII-5

- Challenging filtering for OOB emissions
- Compromises power level on first 6 GHz channels, especially first 160 MHz channel (highest power)

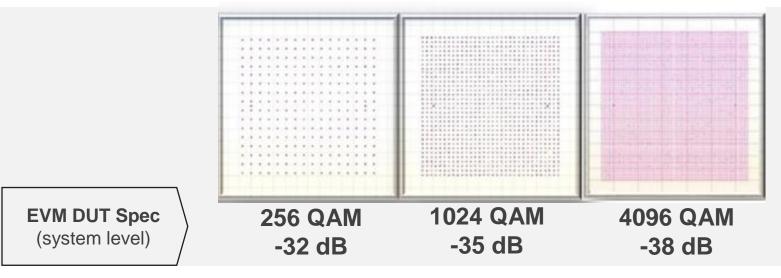
Calibrate and verify TX Power



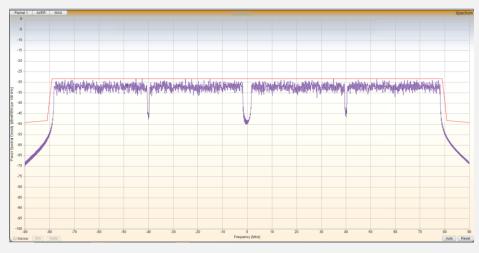
- Per-DUT Transmitter calibration ensures maximizing output power while remaining compliant to emissions
- Spectral Mask and Power verification for channels in the low, mid and high 6 GHz band, includes verification for 20, 40, 80 and 160 MHz

Challenge #3: 1024 QAM, 4096 QAM

Higher order QAM give the highest throughput but increases performance requirements



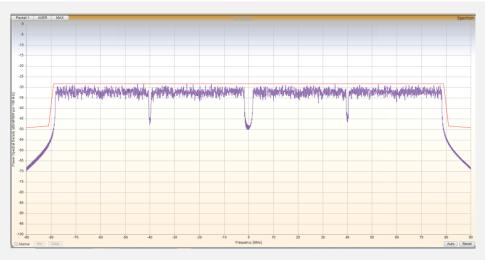
- High QAM rate requires low EVM floor to ensure Transmitter accuracy: IEEE: -35 dB for MCS 10, 11 and -38 dB for MCS 12, 13
- EVM Degradation comes from phase noise and PA non-linear distortions due to gain in compression region
- High QAM rate increases receiver sensitivity requirements



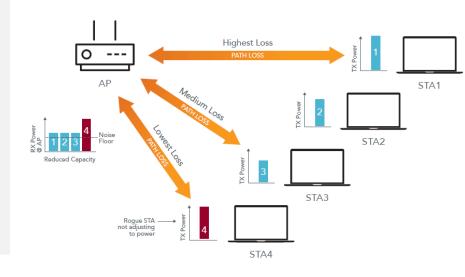
- EVM Measurements indicator of the combined effects of all the possible defects on the transmitter chain
- EVM floor of test equipment requires 10 dB better than DUT to ensure low error margin and ensure accuracy of measurements

Challenge #4: 160 MHz Wide Channels

Wi-Fi 6E Chips support 160 MHz Channels, more 160 MHz channels will be deployed in 6 GHz band


- 802.11ax narrows subcarrier spacing (4 times narrower spacing at 78.125 kHz) 1992 sub-carries in 160 MHz channel
- Distortions occur when the carriers at different frequencies are attenuated or amplified by different factors
- Larger range of frequencies increase likelihood of distortions

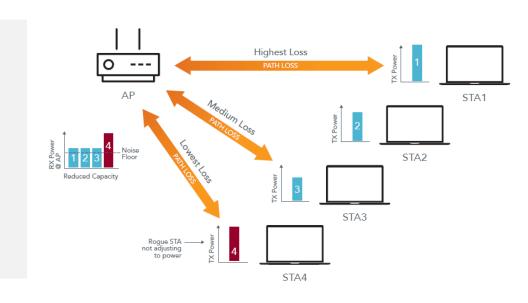
Measure Transmitter Accuracy for 160 MHz channels



 Spectral Flatness ensures that power is spread out evenly over the channel

Challenge #5: Power Level and RSSI Accuracy

802.11ax OFDMA Multi-User requires STA to precisely control TX Power


Demonster	Minimum Requirement		a	
Parameter	Class A	Class B	Comments	
Absolute transmit power accuracy	±3 dB	±9 dB	Accuracy of achieving a specified transmit power.	
RSSI measurement accu- racy	±3 dB	±5 dB	The difference between the RSSI and the received power. Requirements are valid from minimum Rx to max- imum Rx input power.	
Relative transmit power accuracy	N/A	±3 dB	Accuracy of achieving a change in transmit power for consecutive HE TB PPDU. The relative transmit power accuracy is applicable only to Class B devices.	

I ITEPOINT

- For UL MU-OFDMA 802.11ax standard requires STA to precisely measure RSSI to evaluate path loss
- STA are required to precisely adjust they TX power to participate in UL MU-OFDMA transmission
- +/- 3 dB RSSI accuracy and +/- 3 dB TX power accuracy for Class A

RSSI and TX Power Calibration

Parameter	Minimum Requirement		Comments	
rarameter	Class A	Class B	Comments	
Absolute transmit power accuracy	±3 dB	±9 dB	Accuracy of achieving a specified transmit power.	
RSSI measurement accu- racy	±3 dB	±5 dB	The difference between the RSSI and the received power. Requirements are valid from minimum Rx to max- imum Rx input power.	
Relative transmit power accuracy	N/A	±3 dB	Accuracy of achieving a change in transmit power for consecutive HE TB PPDU. The relative transmit power accuracy is applicable only to Class B devices.	

- Per-DUT RSSI and Transmitter calibration ensures compliance to 802.11ax UL MU-OFDMA Transmission
- Both RSSI cal. and Power cal. are needed to achieve IEEE 802.11ax compliance

Wi-Fi 6E Test Strategy

Choosing an Optimized Test Plan

Test items can be greatly reduced maintaining verification *quality* and limiting *cost*.

- Choosing the right combination of channels, data rates, bandwidths and bands based on WLAN system functionalities.
- ✓ Choose a test plan to uncover specific failure mechanisms

<··>			(((r))) • • • • •	8 8-8
1200 MHz of Additional Frequency	Power Spectrum and	High Order Modulation 1024 QAM	160 MHz Channels	Multi-User Operation OFDMA
Coverage	Coexistence	4096 QAM		

Transmitter Verification:

TX Power, Error Vector Magnitude & Spectrum Mask

1024-QAM and 4096-QAM

Test the highest 6GHz band channels

Test 20, 40, 80 and 160 MHz channels

Highest data rates

They have the tightest limits

They are more sensitive to phase noise, compression, etc...

- Lowest data rate

Some chipsets utilize low data rates to increase the transmit power to further improve the range. High power can cause compression, degrading EVM and spectral mask (SEM)

- Highest channel per band -

Phase noise increases with frequency Worst filter roll-off (insertion loss)

Lowest channel

To validate filter ripple and noise figure effects

Mixed bandwidths

Wider and narrow bandwidths have different SNR effects

Maximum power level

Compression in the transmitter degrades the EVM and spectral mask (SEM)

Receiver Verification: RX Sensitivity and Max Input Level

1024-QAM and 4096-QAM

Test the highest 6GHz band channels

Test 20, 40, 80 and 160 MHz channels

Priority to be tested:

- Highest data rate

Because it is more sensitive to impairments

Lowest data rate

To detect ACK packets and ACK power Because longer packets are more sensitive to noise spikes

- Highest channel

Because phase noise increases with frequency

- Lowest channel

To validate filter ripple and noise figure effects

Mixed bandwidth

Wider and narrow bandwidths have different SNR effects

Wireless Test in the Manufacturing Cycle

	Design Validation Testing	Manufacturing PCB Test	End of Line
Objectives	High yielding design that meets requirements	Optimize RF Performance Screening manufacturing defects	Meet regulations, meet user experience expectations
Tests	TX Calibration, RSSI Calibration Power Frequency Spectrum Modulation quality (EVM) Rx sensitivity (PER) MIMO Testing OFDMA (timing, power, CFO) Sweeps over wide temperature range, frequencies and power levels	TX Calibration RSSI Calibration Power Frequency Spectrum Modulation quality (EVM) Rx sensitivity (PER)	Tx Power RX Sensitivity
Outcome	Identify Design issues with PCBA layout, Component	Calibration reduces variation and improves yield. Identify assembly defects(wrong part values, out of	Identify assembly defects and identifies interactions problems with other components (antenna connection, noisy

PCBA layout, Component selection, Firmware

defects(wrong part values, out of tolerance, cracked caps, etc.)

subsystems, bad grounding.)

Wi-Fi 6E Test Coverage: DVT and Manufacturing

Test Category 2.4 GHz, 5 GHz, 6 GHz	Test Items	DVT	Manufacturing
Calibration	TX Cal	Required	Required
Galibration	RSSI Cal	Required	Strongly Recommended
	TX EVM	Required	Strongly Recommended
	TX Spectral Flatness	Required	Recommended
TX Verification	Transmit center frequency leakage (LO leakage)	Required	Recommended
	Transmit center frequency tolerance	Required	Recommended
	Symbol Clock frequency tolerance	Required	Recommended
	Transmit spectrum mask	Required	Recommended
	Transmit Power + Regulatory Limit	Required	Strongly Recommended
	Power Control Test	Required	Recommended
Trigger Based Test	EVM Mask	Required	Recommended
(UL OFDMA Performance)	Residual CFO Test	Required	Recommended
	Timing Synchronization	Required	Recommended
Receiver Verification	RX PER (Sensitivity)	Required	Strongly Recommended
	Sensitivity with MU DL signal	Required	Recommended

IQxel-MW7G

The *IQxeI-MW* 7G is LitePoint's test solution for advanced Wi-Fi 6 and 6E testing on 2.4GHz, 5 GHz and 6 GHz frequency bands

- Continuous frequency range from 400 MHz to 7300 MHz
- 80+80, 160MHz and dual-band concurrent on a single port
- Exceeds stringent 802.11ax EVM requirements over entire frequency range
- Packet detection and timing capabilities for advanced Wi-Fi 6 testing
- True MIMO testing support
- Support for all Wi-Fi standards: WiFi 6/6E (11ax), WiFi 5 (11ac) and 802.11 a/b/g/n/ah/af
- Support for major connectivity technologies: BT, Zigbee, Z-Wave, Sigfox DECT and LTE
- Easy test program migration from IQxel-M and IQxel-MW

Simplify DVT to Production Deployment

Common Platform for easiest correlation from DVT to high volume manufacturing

- Optimized Performance DVT to MFG
- Single DUT to Multi-DUT Configurable, Same HW

LITEPOINT

-END-

THANK YOU

